Normalized defining polynomial
\( x^{15} + 378 x^{13} - 3024 x^{12} + 61040 x^{11} - 598528 x^{10} + 3949848 x^{9} - 33288192 x^{8} + 67412352 x^{7} + 486419584 x^{6} - 1876640640 x^{5} + 409167360 x^{4} + 4110937600 x^{3} - 2003456000 x^{2} - 2157568000 x + 1232896000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-509130717075076439975600141140915908481024000000=-\,2^{18}\cdot 5^{6}\cdot 7^{14}\cdot 43^{4}\cdot 20509^{2}\cdot 356999^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1515.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 43, 20509, 356999$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{32} a^{7} - \frac{1}{8} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{10} - \frac{1}{64} a^{8} - \frac{1}{16} a^{6} - \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1280} a^{11} - \frac{1}{640} a^{9} + \frac{1}{80} a^{8} - \frac{1}{32} a^{7} + \frac{1}{40} a^{6} + \frac{11}{160} a^{5} + \frac{1}{10} a^{4} - \frac{9}{40} a^{3} - \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{2560} a^{12} - \frac{1}{1280} a^{10} + \frac{1}{160} a^{9} - \frac{1}{64} a^{8} + \frac{1}{80} a^{7} + \frac{11}{320} a^{6} - \frac{3}{40} a^{5} - \frac{9}{80} a^{4} + \frac{3}{20} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{51200} a^{13} + \frac{9}{25600} a^{11} + \frac{11}{3200} a^{10} + \frac{1}{320} a^{9} + \frac{1}{100} a^{8} + \frac{131}{6400} a^{7} - \frac{1}{100} a^{6} + \frac{23}{800} a^{5} - \frac{7}{400} a^{4} + \frac{1}{80} a^{3} - \frac{3}{20} a^{2} + \frac{1}{4} a$, $\frac{1}{270867655774953715774331561653884896854972211200} a^{14} + \frac{297436253392007003447953830735653876470971}{67716913943738428943582890413471224213743052800} a^{13} - \frac{23066858649061299439710932297799935530487131}{135433827887476857887165780826942448427486105600} a^{12} + \frac{4623067240762876092739857078318296637223561}{33858456971869214471791445206735612106871526400} a^{11} + \frac{46804507592571668606850287836635440459692569}{16929228485934607235895722603367806053435763200} a^{10} + \frac{7613972973640228404737784139339444048212299}{2116153560741825904486965325420975756679470400} a^{9} + \frac{87467300251611086597454027494945158887696307}{33858456971869214471791445206735612106871526400} a^{8} + \frac{41205889066448933227742675714761297132966621}{1692922848593460723589572260336780605343576320} a^{7} + \frac{41119320586815030402318062114943486520721829}{1058076780370912952243482662710487878339735200} a^{6} - \frac{83407969007274757936052699789132264858294021}{2116153560741825904486965325420975756679470400} a^{5} + \frac{121259349805424830637906185294023111779117097}{2116153560741825904486965325420975756679470400} a^{4} + \frac{1539568247251191204817978343920474680566883}{52903839018545647612174133135524393916986760} a^{3} + \frac{6053282866973487369506007753170979916892203}{105807678037091295224348266271048787833973520} a^{2} + \frac{1214998405923146260997642716943779612125973}{5290383901854564761217413313552439391698676} a - \frac{33186998130689990788440283809855778506974}{1322595975463641190304353328388109847924669}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2962071577270000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed |
| Character table for [A(5)^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $15$ | ${\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | $15$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 43 | Data not computed | ||||||
| 20509 | Data not computed | ||||||
| 356999 | Data not computed | ||||||