Normalized defining polynomial
\( x^{15} - 17 x^{13} - 89 x^{12} - 6 x^{11} + 2412 x^{10} - 250 x^{9} - 18072 x^{8} + 10091 x^{7} + 32534 x^{6} - 1671 x^{5} - 39915 x^{4} + 21349 x^{3} - 5292 x^{2} - 28493 x + 43 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-50068967077842268536000000000=-\,2^{12}\cdot 3^{16}\cdot 5^{9}\cdot 23\cdot 43^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 23, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{10} + \frac{2}{15} a^{9} + \frac{4}{15} a^{8} - \frac{7}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{15} a^{4} - \frac{1}{15} a^{3} - \frac{2}{15} a^{2} - \frac{1}{15}$, $\frac{1}{15} a^{11} + \frac{7}{15} a^{8} - \frac{7}{15} a^{7} + \frac{2}{15} a^{6} - \frac{1}{3} a^{5} - \frac{1}{5} a^{4} + \frac{4}{15} a^{2} - \frac{1}{15} a + \frac{2}{15}$, $\frac{1}{15} a^{12} + \frac{2}{15} a^{9} - \frac{7}{15} a^{8} - \frac{1}{5} a^{7} + \frac{1}{3} a^{6} - \frac{1}{5} a^{5} - \frac{1}{15} a^{3} - \frac{1}{15} a^{2} - \frac{1}{5} a - \frac{1}{3}$, $\frac{1}{1275} a^{13} + \frac{7}{1275} a^{12} + \frac{12}{425} a^{11} + \frac{7}{425} a^{10} - \frac{28}{255} a^{9} - \frac{118}{425} a^{8} + \frac{94}{425} a^{7} - \frac{4}{1275} a^{6} - \frac{208}{425} a^{5} + \frac{1}{85} a^{4} + \frac{613}{1275} a^{3} - \frac{9}{25} a^{2} - \frac{322}{1275} a + \frac{478}{1275}$, $\frac{1}{7578015149893451291933912475} a^{14} - \frac{1913616254757221593697752}{7578015149893451291933912475} a^{13} - \frac{76432433945675831227932697}{7578015149893451291933912475} a^{12} + \frac{135768559056446005569136222}{7578015149893451291933912475} a^{11} - \frac{89696871826412324023393864}{7578015149893451291933912475} a^{10} + \frac{17347637060941258079697082}{2526005049964483763977970825} a^{9} - \frac{1825954904976575899139514257}{7578015149893451291933912475} a^{8} + \frac{3259855311915277034803794593}{7578015149893451291933912475} a^{7} + \frac{382273091678747746954118844}{2526005049964483763977970825} a^{6} + \frac{1789059993219744516375210736}{7578015149893451291933912475} a^{5} + \frac{5546059582707953121522079}{445765597052555958349053675} a^{4} - \frac{866927530962946222358825257}{2526005049964483763977970825} a^{3} - \frac{359613571871972894031853892}{2526005049964483763977970825} a^{2} + \frac{48165030600315907905910599}{194308080766498751075228525} a - \frac{558930733155910265731748567}{7578015149893451291933912475}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3081208230.4 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 155520 |
| The 63 conjugacy class representatives for [S(3)^5]F(5)=S(3)wrF(5) are not computed |
| Character table for [S(3)^5]F(5)=S(3)wrF(5) is not computed |
Intermediate fields
| 5.5.3698000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | R | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.12.16.34 | $x^{12} + 48 x^{11} + 108 x^{10} + 111 x^{9} - 72 x^{8} - 54 x^{7} + 72 x^{6} + 108 x^{5} + 81 x^{4} + 54 x^{3} - 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T173 | $[2, 2, 2, 2]^{8}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 23.8.0.1 | $x^{8} + x^{2} - 2 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.12.6.2 | $x^{12} - 147008443 x^{2} + 164355439274$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |