Normalized defining polynomial
\( x^{15} - 126 x^{13} - 1008 x^{12} - 72268 x^{11} - 1126048 x^{10} - 2073960 x^{9} + 91965888 x^{8} + 1073983904 x^{7} + 5909943424 x^{6} + 19089311360 x^{5} + 38490439680 x^{4} + 49074905600 x^{3} + 38514739200 x^{2} + 17009664000 x + 3239936000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4831264310017778731576326598323772072448000000=-\,2^{15}\cdot 5^{6}\cdot 7^{14}\cdot 113^{4}\cdot 292113919^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1110.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 113, 292113919$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{40} a^{5} - \frac{1}{20} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{160} a^{6} - \frac{1}{80} a^{5} + \frac{1}{20} a^{4} + \frac{1}{20} a^{3} + \frac{3}{40} a^{2} - \frac{1}{4} a$, $\frac{1}{160} a^{7} + \frac{1}{40} a^{4} - \frac{1}{40} a^{3} + \frac{1}{20} a^{2}$, $\frac{1}{1600} a^{8} - \frac{1}{400} a^{6} + \frac{1}{200} a^{5} + \frac{21}{400} a^{4} + \frac{9}{100} a^{3} + \frac{4}{25} a^{2} + \frac{2}{5}$, $\frac{1}{6400} a^{9} - \frac{7}{3200} a^{7} + \frac{1}{800} a^{6} + \frac{1}{1600} a^{5} - \frac{3}{200} a^{4} + \frac{7}{800} a^{3} - \frac{1}{8} a^{2} - \frac{1}{40} a - \frac{1}{2}$, $\frac{1}{25600} a^{10} - \frac{1}{12800} a^{9} - \frac{3}{12800} a^{8} - \frac{1}{6400} a^{7} - \frac{11}{6400} a^{6} - \frac{1}{128} a^{5} + \frac{39}{640} a^{4} - \frac{11}{320} a^{3} + \frac{29}{800} a^{2} - \frac{39}{80} a + \frac{9}{20}$, $\frac{1}{512000} a^{11} - \frac{13}{256000} a^{9} + \frac{7}{32000} a^{8} + \frac{243}{128000} a^{7} + \frac{11}{16000} a^{6} + \frac{101}{12800} a^{5} + \frac{87}{8000} a^{4} - \frac{469}{8000} a^{3} + \frac{933}{4000} a^{2} + \frac{363}{800} a - \frac{59}{200}$, $\frac{1}{10240000} a^{12} - \frac{1}{1024000} a^{11} - \frac{53}{5120000} a^{10} - \frac{187}{2560000} a^{9} + \frac{723}{2560000} a^{8} - \frac{3691}{1280000} a^{7} + \frac{229}{256000} a^{6} - \frac{4217}{640000} a^{5} + \frac{4791}{160000} a^{4} + \frac{1287}{20000} a^{3} - \frac{31}{128} a^{2} + \frac{207}{8000} a - \frac{33}{400}$, $\frac{1}{10240000000} a^{13} - \frac{3}{128000000} a^{12} + \frac{817}{5120000000} a^{11} - \frac{5723}{640000000} a^{10} + \frac{15373}{2560000000} a^{9} - \frac{16469}{320000000} a^{8} + \frac{357367}{256000000} a^{7} + \frac{390147}{160000000} a^{6} - \frac{1000163}{320000000} a^{5} + \frac{3708223}{80000000} a^{4} - \frac{1335059}{16000000} a^{3} + \frac{62219}{500000} a^{2} + \frac{66609}{800000} a + \frac{83367}{200000}$, $\frac{1}{2621440000000} a^{14} - \frac{11}{655360000000} a^{13} + \frac{60297}{1310720000000} a^{12} - \frac{258913}{327680000000} a^{11} - \frac{8070459}{655360000000} a^{10} + \frac{4999839}{163840000000} a^{9} - \frac{88875861}{327680000000} a^{8} - \frac{116481291}{81920000000} a^{7} - \frac{75985039}{81920000000} a^{6} - \frac{11751257}{10240000000} a^{5} + \frac{304549413}{20480000000} a^{4} + \frac{29922261}{1024000000} a^{3} + \frac{22463937}{1024000000} a^{2} + \frac{126129}{25600000} a + \frac{5842233}{12800000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 432308459235000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| 113 | Data not computed | ||||||
| 292113919 | Data not computed | ||||||