Normalized defining polynomial
\( x^{15} + 846 x^{13} - 13536 x^{12} + 239912 x^{11} - 6052864 x^{10} + 82904760 x^{9} - 959105664 x^{8} + 12280855424 x^{7} - 121534297088 x^{6} + 773045872640 x^{5} - 3112713584640 x^{4} + 7937354137600 x^{3} - 12458714726400 x^{2} + 11004542976000 x - 4192206848000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-38583234404050627753560028547647715274328642905059328000000=-\,2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 79^{2}\cdot 107^{5}\cdot 1999^{4}\cdot 4987^{2}\cdot 609683^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $8049.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 79, 107, 1999, 4987, 609683$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{10} a^{3} - \frac{1}{10} a^{2}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{4} + \frac{1}{5} a^{3}$, $\frac{1}{160} a^{7} - \frac{1}{80} a^{5} + \frac{1}{20} a^{4} - \frac{1}{20} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{3200} a^{8} + \frac{7}{1600} a^{6} - \frac{1}{50} a^{5} + \frac{13}{400} a^{4} - \frac{6}{25} a^{3} + \frac{23}{400} a^{2} + \frac{1}{5}$, $\frac{1}{102400} a^{9} - \frac{73}{51200} a^{7} + \frac{33}{3200} a^{6} - \frac{67}{12800} a^{5} - \frac{9}{200} a^{4} + \frac{1463}{12800} a^{3} + \frac{31}{160} a^{2} - \frac{79}{160} a + \frac{1}{4}$, $\frac{1}{409600} a^{10} - \frac{9}{204800} a^{8} + \frac{33}{12800} a^{7} + \frac{157}{51200} a^{6} - \frac{1}{160} a^{5} - \frac{3273}{51200} a^{4} - \frac{453}{3200} a^{3} - \frac{371}{3200} a^{2} + \frac{5}{16} a + \frac{1}{5}$, $\frac{1}{65536000} a^{11} + \frac{1}{1638400} a^{10} - \frac{17}{32768000} a^{9} - \frac{171}{4096000} a^{8} + \frac{13409}{8192000} a^{7} - \frac{5631}{1024000} a^{6} + \frac{21883}{1638400} a^{5} + \frac{68489}{1024000} a^{4} + \frac{34439}{256000} a^{3} - \frac{607}{4000} a^{2} + \frac{427}{6400} a + \frac{351}{800}$, $\frac{1}{1310720000} a^{12} + \frac{463}{655360000} a^{10} - \frac{123}{40960000} a^{9} + \frac{849}{163840000} a^{8} - \frac{6149}{5120000} a^{7} - \frac{71877}{32768000} a^{6} - \frac{95453}{10240000} a^{5} - \frac{292771}{5120000} a^{4} - \frac{45921}{640000} a^{3} + \frac{16939}{128000} a^{2} + \frac{1749}{4000} a - \frac{99}{400}$, $\frac{1}{2621440000000} a^{13} + \frac{3}{16384000000} a^{12} + \frac{3943}{1310720000000} a^{11} - \frac{7533}{81920000000} a^{10} + \frac{989509}{327680000000} a^{9} + \frac{134101}{10240000000} a^{8} - \frac{14755157}{65536000000} a^{7} + \frac{226884717}{20480000000} a^{6} - \frac{282033057}{20480000000} a^{5} - \frac{75924147}{2560000000} a^{4} + \frac{41526349}{256000000} a^{3} - \frac{838157}{8000000} a^{2} + \frac{441601}{3200000} a - \frac{93863}{400000}$, $\frac{1}{2684354560000000} a^{14} + \frac{43}{335544320000000} a^{13} - \frac{464697}{1342177280000000} a^{12} - \frac{752097}{167772160000000} a^{11} - \frac{322246539}{335544320000000} a^{10} + \frac{188637751}{41943040000000} a^{9} + \frac{23810928663}{335544320000000} a^{8} + \frac{5152409779}{41943040000000} a^{7} - \frac{180457712069}{20971520000000} a^{6} - \frac{12817522857}{655360000000} a^{5} + \frac{56166497741}{1310720000000} a^{4} + \frac{849480739}{32768000000} a^{3} + \frac{2231595209}{16384000000} a^{2} - \frac{3869973}{40960000} a + \frac{24501921}{51200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1318066696200000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $79$ | $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{79}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.2.1.2 | $x^{2} + 158$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 79.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 79.5.0.1 | $x^{5} - x + 16$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $107$ | $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{107}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 107.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 107.4.2.1 | $x^{4} + 963 x^{2} + 286225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 107.6.3.1 | $x^{6} - 214 x^{4} + 11449 x^{2} - 99228483$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 1999 | Data not computed | ||||||
| 4987 | Data not computed | ||||||
| 609683 | Data not computed | ||||||