Normalized defining polynomial
\( x^{15} - 4 x^{14} - 1264 x^{13} - 3539 x^{12} + 194086 x^{11} + 14315825 x^{10} + 207980393 x^{9} - 11155818269 x^{8} - 106782015292 x^{7} + 2695173632356 x^{6} + 60691267440950 x^{5} - 75831436048429 x^{4} - 19327557996736266 x^{3} + 33906382851120779 x^{2} + 414276426535790729 x - 414601786688651713 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-31256653180970842100294052450870850335221875=-\,5^{5}\cdot 13^{3}\cdot 19^{6}\cdot 31^{10}\cdot 41^{4}\cdot 347^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $793.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 19, 31, 41, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{14} - \frac{2071951256415232704139612875243018329994290272360451595508583995478405460987793350861787310049900894774547412121484951745}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{13} + \frac{1532322737080521567766954543131929092521285541263605682574062740989466711233063739331313422227160886629429662293005013355}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{12} + \frac{3703452571988009293850794702475621585620395108398010489361827437107187117895235635643995880090514946642689457905793055638}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{11} + \frac{797813418878962912563216754452791964728252196528806731545835672297766005635001773970837561161592700348571306342700197990}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{10} + \frac{74693151246234852542679639969774273010863999290687148367921900926408147987950740971370214705343128373176189150453145687}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{9} + \frac{3772888278446641831534661628885514241666635984996904931891065720426514339185533099105125258412072681010492198346229523107}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{8} + \frac{1735329755267165606177204616027881578451795050164790276043651795024122607839930157512643791253885701201291580378420705700}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{7} + \frac{967882621723417657642693171523147492226346414419950207602237490951332087469814820924520507427144687238914795291993737590}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{6} - \frac{3519476344139011541989340800450147412643529685870041481979454060769139066303897650295719387727539911703763463884226220812}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{5} + \frac{2779243267532072740593603282235869840767859174871757416496607606032489968631173334065456753980374009464041462033608469667}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{4} + \frac{3689997612082150133153303608317282210868256890940791389401937985600669944815136672169317778200538628646205614323696220479}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{3} - \frac{2385191592487872657366543856418735391488177921172173921274659327752451687328142669203303397446984123342100478218078868850}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a^{2} + \frac{309618247603472435728233759833862336217867120772944434097403980902493023091004002783650827175239887630075393293566094349}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539} a - \frac{965830446367180324527906705250463393878528122186528178683329388886907760383357551476537791560002710513741337442002657899}{9828223129945599856007751018231218548002242151397666087625749494601254997512335959894810029148192233088975448764411838539}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8810665161660000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 19440 |
| The 36 conjugacy class representatives for [3^4:2]S(5) |
| Character table for [3^4:2]S(5) is not computed |
Intermediate fields
| 5.3.4511.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }$ | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 19.9.6.3 | $x^{9} - 361 x^{3} + 27436$ | $3$ | $3$ | $6$ | $C_9$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.3.2.3 | $x^{3} - 1519$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.12.8.3 | $x^{12} + 32674 x^{6} - 119164 x^{3} + 266897569$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $41$ | $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{41}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 41.6.4.2 | $x^{6} - 41 x^{3} + 20172$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 41.6.0.1 | $x^{6} - x + 7$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 347 | Data not computed | ||||||