Normalized defining polynomial
\( x^{15} + 9 x^{13} - 792 x^{12} - 2395 x^{11} + 95676 x^{10} - 483381 x^{9} + 225648 x^{8} + 4223644 x^{7} - 8858444 x^{6} - 4794300 x^{5} + 25180920 x^{4} - 13571300 x^{3} - 5876000 x^{2} + 3164000 x + 904000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-236400461395948294457915703984996352000000=-\,2^{20}\cdot 5^{6}\cdot 37^{5}\cdot 113^{4}\cdot 139^{2}\cdot 257003^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $573.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 113, 139, 257003$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{11} - \frac{1}{20} a^{9} - \frac{1}{10} a^{8} - \frac{1}{4} a^{7} + \frac{3}{10} a^{6} + \frac{9}{20} a^{5} - \frac{1}{10} a^{4} - \frac{3}{10} a^{3} + \frac{3}{10} a^{2}$, $\frac{1}{20} a^{12} - \frac{1}{20} a^{10} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} + \frac{3}{10} a^{7} + \frac{9}{20} a^{6} - \frac{1}{10} a^{5} - \frac{3}{10} a^{4} + \frac{3}{10} a^{3}$, $\frac{1}{200} a^{13} - \frac{1}{200} a^{11} + \frac{1}{25} a^{10} + \frac{3}{40} a^{9} + \frac{12}{25} a^{8} + \frac{69}{200} a^{7} - \frac{3}{50} a^{6} - \frac{23}{100} a^{5} - \frac{3}{25} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{2} a$, $\frac{1}{1382248138785721082672091970860053545366000} a^{14} + \frac{212310774823324211329690736451885249837}{138224813878572108267209197086005354536600} a^{13} - \frac{33974145839025689462655481752861460875171}{1382248138785721082672091970860053545366000} a^{12} + \frac{13807975602883254587980355534097907130419}{691124069392860541336045985430026772683000} a^{11} + \frac{2745544531578971792246105495566456196669}{276449627757144216534418394172010709073200} a^{10} - \frac{145356118548290913341610636830892864453107}{691124069392860541336045985430026772683000} a^{9} + \frac{88608897328354221865103135618722520254839}{1382248138785721082672091970860053545366000} a^{8} - \frac{159363859666825260911593958424303371920651}{691124069392860541336045985430026772683000} a^{7} - \frac{68926901733472692337417431391181992724527}{172781017348215135334011496357506693170750} a^{6} - \frac{24813726550871274795087808426835463915713}{172781017348215135334011496357506693170750} a^{5} + \frac{536825755379900149796308511958885709731}{2764496277571442165344183941720107090732} a^{4} + \frac{8016644710529005154170023035565829281781}{34556203469643027066802299271501338634150} a^{3} - \frac{73138825353570012366815342037668912407}{2764496277571442165344183941720107090732} a^{2} + \frac{2966492598105594095150391302597521612099}{6911240693928605413360459854300267726830} a - \frac{227336052942189455017583672243186244627}{691124069392860541336045985430026772683}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 32377981625800000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.8.4 | $x^{6} + 2 x^{3} + 2 x^{2} + 2$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| 2.6.10.4 | $x^{6} + 2 x^{5} + 2 x^{4} + 6$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||
| 113 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.1.1 | $x^{2} - 139$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 257003 | Data not computed | ||||||