Normalized defining polynomial
\( x^{15} + 20 x^{13} - 40 x^{12} - 590 x^{11} + 1192 x^{10} - 7900 x^{9} + 33640 x^{8} + 19520 x^{7} - 201920 x^{6} + 244752 x^{5} + 132000 x^{4} - 778600 x^{3} - 120800 x^{2} + 310400 x + 79360 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-220573586958400000000000000000000=-\,2^{24}\cdot 5^{20}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{40} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{10} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{1}{10} a^{5}$, $\frac{1}{3200} a^{13} + \frac{3}{400} a^{12} + \frac{73}{800} a^{11} - \frac{41}{400} a^{10} + \frac{37}{320} a^{9} + \frac{23}{400} a^{8} - \frac{191}{800} a^{7} - \frac{79}{400} a^{6} - \frac{3}{50} a^{5} - \frac{11}{40} a^{3} - \frac{7}{20} a^{2} - \frac{9}{80} a - \frac{1}{20}$, $\frac{1}{858599325911128300032767704524800} a^{14} - \frac{11681817928340429144659186973}{214649831477782075008191926131200} a^{13} - \frac{1835847824394162141599266625303}{214649831477782075008191926131200} a^{12} + \frac{1584790806973437191629867659517}{21464983147778207500819192613120} a^{11} - \frac{2234881242435984905519867274231}{429299662955564150016383852262400} a^{10} + \frac{45747603294790439424598298813}{6707807233680689844005997691600} a^{9} + \frac{14994276753685201303622440368073}{214649831477782075008191926131200} a^{8} + \frac{8953786187852499726754637402339}{107324915738891037504095963065600} a^{7} - \frac{831007973277121806862181723281}{5366245786944551875204798153280} a^{6} - \frac{97362572593927516127209463457}{13415614467361379688011995383200} a^{5} - \frac{765773995447831795434662454691}{10732491573889103750409596306560} a^{4} - \frac{200598586479795365657482273369}{5366245786944551875204798153280} a^{3} - \frac{4834089791300476975061288969401}{21464983147778207500819192613120} a^{2} - \frac{196031980009534345925893509619}{536624578694455187520479815328} a + \frac{133948709735290415898542805979}{1341561446736137968801199538320}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 143671917417 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed |
| Character table for [S(5)^3]3=S(5)wr3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }$ | $15$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.199 | $x^{12} - 8 x^{11} - 6 x^{8} + 8 x^{6} + 8 x^{5} + 16 x^{4} + 16 x^{3} - 8 x^{2} - 8$ | $4$ | $3$ | $24$ | 12T92 | $[2, 2, 2, 3, 3, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.5.9.3 | $x^{5} + 80$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.5.8.7 | $x^{5} + 10 x^{4} + 5$ | $5$ | $1$ | $8$ | $F_5$ | $[2]^{4}$ | |
| $13$ | 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.2 | $x^{3} - 13$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |