Normalized defining polynomial
\( x^{15} + 639 x^{13} - 6552 x^{12} + 106045 x^{11} - 1415004 x^{10} + 9994509 x^{9} - 54899712 x^{8} + 193325164 x^{7} - 284112164 x^{6} - 102417300 x^{5} + 624620520 x^{4} - 336640300 x^{3} - 145756000 x^{2} + 78484000 x + 22424000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[9, 3]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-17517842124064884881429616734159236380876841984000000=-\,2^{16}\cdot 5^{6}\cdot 17^{2}\cdot 37^{6}\cdot 2803^{4}\cdot 4003^{2}\cdot 152723^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3040.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17, 37, 2803, 4003, 152723$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{11} - \frac{1}{40} a^{9} - \frac{1}{20} a^{8} - \frac{3}{8} a^{7} + \frac{3}{20} a^{6} - \frac{11}{40} a^{5} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3} - \frac{7}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{40} a^{12} - \frac{1}{40} a^{10} - \frac{1}{20} a^{9} - \frac{3}{8} a^{8} + \frac{3}{20} a^{7} - \frac{11}{40} a^{6} - \frac{1}{20} a^{5} + \frac{1}{10} a^{4} - \frac{7}{20} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{200} a^{13} - \frac{1}{200} a^{11} - \frac{1}{100} a^{10} - \frac{3}{40} a^{9} - \frac{37}{100} a^{8} - \frac{91}{200} a^{7} - \frac{1}{100} a^{6} + \frac{1}{50} a^{5} + \frac{33}{100} a^{4} - \frac{3}{10} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{10915230617051366139959078082190756532346081060224806000} a^{14} + \frac{61066003555200136336285616721694876103454756848996}{136440382713142076749488476027384456654326013252810075} a^{13} - \frac{86711919195618863891690624826794258471526363397102491}{10915230617051366139959078082190756532346081060224806000} a^{12} - \frac{33046048763450653648150896850239934706198301329716291}{5457615308525683069979539041095378266173040530112403000} a^{11} + \frac{168804886957058477844795627028547624942511924838003}{2183046123410273227991815616438151306469216212044961200} a^{10} + \frac{108721087937261821395990145330285870290850193887828703}{5457615308525683069979539041095378266173040530112403000} a^{9} + \frac{3196844539739270154879584567623038885363605422729823639}{10915230617051366139959078082190756532346081060224806000} a^{8} + \frac{1650251010156294928041130085673147242993583885162332439}{5457615308525683069979539041095378266173040530112403000} a^{7} - \frac{169464108521917727691440800892836813452598705895539233}{5457615308525683069979539041095378266173040530112403000} a^{6} + \frac{1597257908881852256121290877593001270761984024793695433}{5457615308525683069979539041095378266173040530112403000} a^{5} - \frac{127960363766055471225219764927195049373435709574119761}{272880765426284153498976952054768913308652026505620150} a^{4} - \frac{112561427338818813891061597660562306825700235039157083}{545761530852568306997953904109537826617304053011240300} a^{3} - \frac{1000831890338649865565510180290884863824283360742651}{27288076542628415349897695205476891330865202650562015} a^{2} - \frac{5539566963984935314123176675584688123162486936283721}{54576153085256830699795390410953782661730405301124030} a + \frac{1885625875728472923334695053474074663302567080018582}{5457615308525683069979539041095378266173040530112403}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12427975138800000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | R | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.10.7 | $x^{6} + 2 x^{5} + 4 x^{3} + 2$ | $6$ | $1$ | $10$ | $S_4\times C_2$ | $[2, 8/3, 8/3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 37 | Data not computed | ||||||
| 2803 | Data not computed | ||||||
| 4003 | Data not computed | ||||||
| 152723 | Data not computed | ||||||