Properties

Label 15.9.10013314923...3792.1
Degree $15$
Signature $[9, 3]$
Discriminant $-\,2^{18}\cdot 37^{6}\cdot 53^{3}$
Root discriminant $21.55$
Ramified primes $2, 37, 53$
Class number $1$
Class group Trivial
Galois group $S_5 \times S_3$ (as 15T29)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -4, -26, 29, 42, -69, 2, 78, -100, 29, 70, -82, 26, 7, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 6*x^14 + 7*x^13 + 26*x^12 - 82*x^11 + 70*x^10 + 29*x^9 - 100*x^8 + 78*x^7 + 2*x^6 - 69*x^5 + 42*x^4 + 29*x^3 - 26*x^2 - 4*x + 4)
 
gp: K = bnfinit(x^15 - 6*x^14 + 7*x^13 + 26*x^12 - 82*x^11 + 70*x^10 + 29*x^9 - 100*x^8 + 78*x^7 + 2*x^6 - 69*x^5 + 42*x^4 + 29*x^3 - 26*x^2 - 4*x + 4, 1)
 

Normalized defining polynomial

\( x^{15} - 6 x^{14} + 7 x^{13} + 26 x^{12} - 82 x^{11} + 70 x^{10} + 29 x^{9} - 100 x^{8} + 78 x^{7} + 2 x^{6} - 69 x^{5} + 42 x^{4} + 29 x^{3} - 26 x^{2} - 4 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[9, 3]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-100133149236970913792=-\,2^{18}\cdot 37^{6}\cdot 53^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $21.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 37, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} - \frac{2}{11} a^{11} + \frac{3}{11} a^{10} - \frac{2}{11} a^{9} - \frac{2}{11} a^{8} + \frac{2}{11} a^{7} - \frac{4}{11} a^{6} + \frac{3}{11} a^{5} + \frac{1}{11} a^{4} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} - \frac{3}{11} a - \frac{2}{11}$, $\frac{1}{19118} a^{14} + \frac{26}{9559} a^{13} + \frac{3023}{19118} a^{12} + \frac{1649}{9559} a^{11} + \frac{1}{869} a^{10} + \frac{673}{9559} a^{9} + \frac{1625}{19118} a^{8} - \frac{720}{9559} a^{7} - \frac{3485}{9559} a^{6} - \frac{1390}{9559} a^{5} - \frac{8365}{19118} a^{4} - \frac{3589}{9559} a^{3} + \frac{391}{1738} a^{2} + \frac{449}{9559} a - \frac{2637}{9559}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $11$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 70774.3801856 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_5 \times S_3$ (as 15T29):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 21 conjugacy class representatives for $S_5 \times S_3$
Character table for $S_5 \times S_3$ is not computed

Intermediate fields

3.3.148.1, 5.3.31376.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }$ ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ R ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ R ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.12.16.2$x^{12} - 108 x^{10} - 171 x^{8} + 344 x^{6} - 61 x^{4} + 468 x^{2} + 359$$6$$2$$16$$(C_6\times C_2):C_2$$[2, 2]_{3}^{2}$
37Data not computed
$53$53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.3.0.1$x^{3} - x + 8$$1$$3$$0$$C_3$$[\ ]^{3}$
53.6.3.1$x^{6} - 106 x^{4} + 2809 x^{2} - 9528128$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$