Normalized defining polynomial
\( x^{15} - 144 x^{13} - 1008 x^{12} + 754 x^{11} + 37432 x^{10} + 182394 x^{9} + 94320 x^{8} - 1412708 x^{7} - 1669256 x^{6} + 4312160 x^{5} + 6973920 x^{4} - 1537000 x^{3} - 6681600 x^{2} - 3248000 x - 464000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(87173191285397298520836997842731008000000=2^{24}\cdot 5^{6}\cdot 13^{2}\cdot 29^{4}\cdot 37^{5}\cdot 151^{2}\cdot 41947^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $536.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 29, 37, 151, 41947$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4}$, $\frac{1}{20} a^{11} + \frac{1}{20} a^{9} + \frac{1}{10} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} + \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{120} a^{12} - \frac{1}{60} a^{11} + \frac{1}{20} a^{10} + \frac{1}{12} a^{9} + \frac{1}{12} a^{8} + \frac{1}{30} a^{7} - \frac{1}{12} a^{6} - \frac{2}{5} a^{5} - \frac{1}{15} a^{4} - \frac{1}{2} a^{3} - \frac{1}{15} a^{2} + \frac{1}{3}$, $\frac{1}{1200} a^{13} - \frac{1}{300} a^{11} - \frac{1}{150} a^{10} - \frac{1}{200} a^{9} - \frac{6}{25} a^{8} + \frac{77}{600} a^{7} - \frac{1}{6} a^{6} + \frac{13}{300} a^{5} + \frac{43}{150} a^{4} - \frac{7}{15} a^{3} + \frac{1}{15} a^{2} - \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{64883499766640909367514567989779258400} a^{14} - \frac{6564230388366609821440973402924309}{16220874941660227341878641997444814600} a^{13} + \frac{5914888542152833498644769813310371}{4055218735415056835469660499361203650} a^{12} + \frac{187565132110337923893149543853568297}{8110437470830113670939320998722407300} a^{11} + \frac{609330061754669510388297391794190661}{32441749883320454683757283994889629200} a^{10} - \frac{604023497335707323605754816227838969}{8110437470830113670939320998722407300} a^{9} - \frac{1227343641905109087081937953786008073}{10813916627773484894585761331629876400} a^{8} - \frac{29433164594360563127005543367897113}{8110437470830113670939320998722407300} a^{7} + \frac{1066757127294250349783955481157009541}{5406958313886742447292880665814938200} a^{6} - \frac{1198382041070286606863352817700779957}{2703479156943371223646440332907469100} a^{5} + \frac{179737818289919233487049508169573021}{4055218735415056835469660499361203650} a^{4} + \frac{31828637980212193477008881795159217}{270347915694337122364644033290746910} a^{3} - \frac{593534122778493308483853900066354673}{1622087494166022734187864199744481460} a^{2} - \frac{7377732803630853881505131681323492}{27034791569433712236464403329074691} a + \frac{24601217958519280765743297552771164}{81104374708301136709393209987224073}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2898519216390000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }$ | R | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.8 | $x^{6} + 4 x^{4} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.11.8 | $x^{6} + 4 x^{4} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.10.0.1 | $x^{10} + 2 x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $29$ | 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ |
| 29.10.0.1 | $x^{10} + x^{2} - 2 x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 37 | Data not computed | ||||||
| 151 | Data not computed | ||||||
| 41947 | Data not computed | ||||||