Normalized defining polynomial
\( x^{15} - 180 x^{13} - 144 x^{12} + 6684 x^{11} + 22688 x^{10} - 62424 x^{9} - 624384 x^{8} + 10372064 x^{7} + 60653056 x^{6} + 29354240 x^{5} - 267264000 x^{4} - 302528000 x^{3} + 277657600 x^{2} + 415744000 x + 118784000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(695337504354450262881345263439253504000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 29^{4}\cdot 921789289^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $615.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 29, 921789289$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{128} a^{10} - \frac{1}{32} a^{6} - \frac{1}{16} a^{4}$, $\frac{1}{1280} a^{11} + \frac{1}{80} a^{8} - \frac{9}{320} a^{7} - \frac{1}{40} a^{6} - \frac{13}{160} a^{5} - \frac{1}{20} a^{4} + \frac{1}{20} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{2560} a^{12} + \frac{1}{160} a^{9} - \frac{9}{640} a^{8} - \frac{1}{80} a^{7} - \frac{13}{320} a^{6} + \frac{1}{10} a^{5} + \frac{1}{40} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{51200} a^{13} - \frac{1}{2560} a^{11} - \frac{9}{3200} a^{10} + \frac{71}{12800} a^{9} - \frac{11}{1600} a^{8} - \frac{123}{6400} a^{7} - \frac{9}{200} a^{6} + \frac{7}{1600} a^{5} - \frac{7}{100} a^{4} - \frac{9}{40} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{11347371640771402354356993611304929484800} a^{14} + \frac{3667028577781902866344970629239941}{1418421455096425294294624201413116185600} a^{13} + \frac{109783568022751887501098354771461723}{567368582038570117717849680565246474240} a^{12} + \frac{146432733449984400559653769269443261}{709210727548212647147312100706558092800} a^{11} + \frac{3575606172110054581996130571764841063}{2836842910192850588589248402826232371200} a^{10} - \frac{121945910537171801993036596277365173}{17730268188705316178682802517663952320} a^{9} + \frac{2346932921651393531556839525167985689}{283684291019285058858924840282623237120} a^{8} - \frac{2738288793683172498252251778775106139}{177302681887053161786828025176639523200} a^{7} + \frac{4972773362312692639815031034146438651}{354605363774106323573656050353279046400} a^{6} + \frac{4807830589811361871950412700644239583}{44325670471763290446707006294159880800} a^{5} - \frac{2477744836065394967955843872794420787}{44325670471763290446707006294159880800} a^{4} + \frac{36198578944498839519134155647483853}{443256704717632904467070062941598808} a^{3} - \frac{520328492602093697418141614230070239}{4432567047176329044670700629415988080} a^{2} + \frac{7904794823889552797303791068930587}{221628352358816452233535031470799404} a + \frac{14529490867303563589578901805453083}{55407088089704113058383757867699851}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 658851832895000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | $15$ | $15$ | $15$ | R | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | $15$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29.5.4.1 | $x^{5} - 29$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 29.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 921789289 | Data not computed | ||||||