Normalized defining polynomial
\( x^{15} - 432 x^{13} - 1296 x^{12} + 50420 x^{11} + 455488 x^{10} - 886392 x^{9} - 36652608 x^{8} - 62206848 x^{7} + 777708416 x^{6} + 2785791360 x^{5} + 610352640 x^{4} - 6132262400 x^{3} - 2988544000 x^{2} + 3218432000 x + 1839104000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69454578208162627938004535597516784128000000=2^{15}\cdot 5^{6}\cdot 7^{10}\cdot 449^{4}\cdot 5503^{2}\cdot 19753^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $837.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 449, 5503, 19753$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} + \frac{1}{16} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{256} a^{10} - \frac{1}{64} a^{8} - \frac{1}{32} a^{7} + \frac{1}{64} a^{6} - \frac{1}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{2560} a^{11} - \frac{3}{640} a^{9} + \frac{3}{320} a^{8} - \frac{3}{128} a^{7} + \frac{1}{20} a^{6} + \frac{11}{320} a^{5} - \frac{9}{80} a^{4} - \frac{9}{80} a^{3} - \frac{1}{40} a^{2}$, $\frac{1}{5120} a^{12} + \frac{1}{640} a^{10} + \frac{3}{640} a^{9} + \frac{1}{256} a^{8} - \frac{1}{160} a^{7} + \frac{21}{640} a^{6} + \frac{11}{160} a^{5} + \frac{3}{80} a^{4} - \frac{11}{80} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{51200} a^{13} + \frac{1}{6400} a^{11} - \frac{3}{1600} a^{10} + \frac{17}{2560} a^{9} + \frac{7}{800} a^{8} - \frac{99}{6400} a^{7} - \frac{21}{400} a^{6} + \frac{23}{800} a^{5} - \frac{9}{200} a^{4} - \frac{19}{80} a^{3} + \frac{3}{20} a^{2} - \frac{1}{4} a$, $\frac{1}{31890877281078994392370642187967145922095308800} a^{14} + \frac{30859611575548981505989013532155901414311}{3986359660134874299046330273495893240261913600} a^{13} - \frac{182435364685100716291592317559412797789849}{3986359660134874299046330273495893240261913600} a^{12} + \frac{108980051201719823865048328173946923960243}{1993179830067437149523165136747946620130956800} a^{11} + \frac{2098671476711081592932101009745446607512739}{1138959902895678371156094363855969497217689600} a^{10} + \frac{272438062844426249487027555287451070767219}{996589915033718574761582568373973310065478400} a^{9} + \frac{5863583687904927363025453885607374689114867}{569479951447839185578047181927984748608844800} a^{8} - \frac{5222727420867144183276366906643863883035203}{249147478758429643690395642093493327516369600} a^{7} + \frac{26733434075941206509707971415084975313876637}{498294957516859287380791284186986655032739200} a^{6} - \frac{1869936301611500316504163228454331835546627}{19165190673725357206953510930268717501259200} a^{5} + \frac{29944934978341837615710765571106596293256541}{249147478758429643690395642093493327516369600} a^{4} - \frac{598313067189413662871303592837321979784501}{3114343484480370546129945526168666593954620} a^{3} - \frac{57481386416852206263222213424113236325491}{958259533686267860347675546513435875062960} a^{2} - \frac{5172307720319187093724653619278770864899}{23956488342156696508691888662835896876574} a + \frac{72814832234186691564737101726683830411648}{155717174224018527306497276308433329697731}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 33200333512000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed |
| Character table for [A(5)^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.8 | $x^{6} + 4 x^{2} - 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 449 | Data not computed | ||||||
| 5503 | Data not computed | ||||||
| 19753 | Data not computed | ||||||