Normalized defining polynomial
\( x^{15} + 45 x^{13} - 215 x^{12} - 2880 x^{11} + 1530 x^{10} + 23795 x^{9} + 38700 x^{8} + 367620 x^{7} + 863075 x^{6} - 1980945 x^{5} - 5506575 x^{4} + 2781200 x^{3} + 8667000 x^{2} - 2889000 x - 5778000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65659847052759660683307037353515625=3^{20}\cdot 5^{16}\cdot 47^{6}\cdot 107^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $209.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 47, 107$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{12} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{300} a^{13} - \frac{1}{20} a^{11} - \frac{1}{60} a^{10} - \frac{1}{10} a^{9} + \frac{1}{10} a^{8} - \frac{11}{60} a^{7} + \frac{2}{5} a^{5} - \frac{1}{12} a^{4} - \frac{3}{20} a^{3} + \frac{1}{4} a^{2} + \frac{1}{6} a$, $\frac{1}{148898145757508676577783620088050386685670200} a^{14} - \frac{12818567787596456717514931496776983514411}{24816357626251446096297270014675064447611700} a^{13} + \frac{131549711164273058500411218029318631170373}{3308847683500192812839636001956675259681560} a^{12} - \frac{1447661973823592108150192395838405881732549}{29779629151501735315556724017610077337134040} a^{11} - \frac{120628963827005939907423642196422255787121}{4963271525250289219259454002935012889522340} a^{10} - \frac{224843645917964648129015042036210238181261}{1654423841750096406419818000978337629840780} a^{9} + \frac{3735759296587845983055897279411514001712643}{29779629151501735315556724017610077337134040} a^{8} + \frac{2289471611980525893372092751844088835967721}{4963271525250289219259454002935012889522340} a^{7} - \frac{8354268654949287430350310734146670902914}{1240817881312572304814863500733753222380585} a^{6} + \frac{10313230019465038642059382538361278326683151}{29779629151501735315556724017610077337134040} a^{5} + \frac{4033368009748994722976167324194516397370047}{9926543050500578438518908005870025779044680} a^{4} - \frac{3663611114216002212921647296536700343736007}{9926543050500578438518908005870025779044680} a^{3} - \frac{1427472097766717326890540888298529477742143}{2977962915150173531555672401761007733713404} a^{2} - \frac{189698425067585201058861659169606290735611}{496327152525028921925945400293501288952234} a + \frac{17275987409321802099546975919038995573165}{82721192087504820320990900048916881492039}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2005835231560 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 77760 |
| The 39 conjugacy class representatives for 1/2[S(3)^5]F(5) |
| Character table for 1/2[S(3)^5]F(5) is not computed |
Intermediate fields
| 5.5.6903125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | $15$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.12.16.19 | $x^{12} + 66 x^{11} - 45 x^{10} - 120 x^{9} + 9 x^{8} + 108 x^{7} + 18 x^{6} - 108 x^{5} - 81 x^{4} - 54 x^{3} - 81 x^{2} - 81$ | $3$ | $4$ | $16$ | 12T46 | $[2, 2]^{8}$ | |
| $5$ | 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.1 | $x^{10} + 20 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.12.6.2 | $x^{12} - 229345007 x^{2} + 53896076645$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ | |
| 107 | Data not computed | ||||||