Normalized defining polynomial
\( x^{15} - 15 x^{13} - 22 x^{12} + 90 x^{11} + 264 x^{10} - 806 x^{9} - 1188 x^{8} + 5229 x^{7} + 14104 x^{6} - 14715 x^{5} - 72150 x^{4} - 6696 x^{3} + 105552 x^{2} + 63504 x - 27616 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(65140401200194873310818074624=2^{18}\cdot 3^{12}\cdot 881^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 881$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{3} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{4} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{16} a^{3} - \frac{3}{16} a^{2} + \frac{1}{4}$, $\frac{1}{64} a^{6} + \frac{1}{32} a^{4} - \frac{1}{16} a^{3} - \frac{15}{64} a^{2} + \frac{7}{16} a - \frac{3}{16}$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{5} - \frac{3}{64} a^{3} + \frac{1}{8} a^{2} - \frac{1}{16} a$, $\frac{1}{256} a^{8} + \frac{1}{256} a^{7} + \frac{3}{128} a^{5} - \frac{15}{256} a^{4} + \frac{13}{256} a^{3} + \frac{19}{128} a^{2} - \frac{25}{64} a + \frac{7}{32}$, $\frac{1}{512} a^{9} - \frac{1}{512} a^{7} - \frac{1}{256} a^{6} + \frac{11}{512} a^{5} + \frac{3}{128} a^{4} - \frac{7}{512} a^{3} + \frac{23}{256} a^{2} - \frac{41}{128} a + \frac{13}{64}$, $\frac{1}{512} a^{10} - \frac{1}{512} a^{8} - \frac{1}{256} a^{7} + \frac{3}{512} a^{6} + \frac{3}{128} a^{5} - \frac{23}{512} a^{4} + \frac{7}{256} a^{3} - \frac{11}{128} a^{2} + \frac{9}{64} a - \frac{1}{16}$, $\frac{1}{2048} a^{11} + \frac{1}{2048} a^{10} + \frac{1}{2048} a^{9} - \frac{3}{2048} a^{8} + \frac{7}{2048} a^{7} - \frac{13}{2048} a^{6} + \frac{27}{2048} a^{5} - \frac{1}{2048} a^{4} - \frac{1}{512} a^{3} - \frac{1}{4} a^{2} - \frac{3}{64} a + \frac{37}{128}$, $\frac{1}{16384} a^{12} - \frac{3}{4096} a^{10} - \frac{5}{8192} a^{8} - \frac{1}{256} a^{7} + \frac{31}{4096} a^{6} - \frac{3}{128} a^{5} - \frac{351}{16384} a^{4} + \frac{1}{128} a^{3} - \frac{43}{2048} a^{2} + \frac{55}{256} a + \frac{349}{1024}$, $\frac{1}{49152} a^{13} + \frac{1}{49152} a^{12} - \frac{1}{4096} a^{11} - \frac{11}{12288} a^{10} + \frac{11}{24576} a^{9} - \frac{7}{8192} a^{8} + \frac{29}{4096} a^{7} + \frac{29}{4096} a^{6} - \frac{85}{16384} a^{5} - \frac{2687}{49152} a^{4} + \frac{305}{6144} a^{3} - \frac{441}{2048} a^{2} + \frac{353}{3072} a + \frac{1325}{3072}$, $\frac{1}{294912} a^{14} - \frac{1}{294912} a^{13} + \frac{1}{73728} a^{12} + \frac{7}{73728} a^{11} + \frac{67}{147456} a^{10} - \frac{115}{147456} a^{9} - \frac{13}{8192} a^{8} - \frac{27}{8192} a^{7} + \frac{9}{32768} a^{6} - \frac{8369}{294912} a^{5} + \frac{829}{36864} a^{4} + \frac{2147}{36864} a^{3} - \frac{223}{18432} a^{2} + \frac{2419}{18432} a - \frac{1}{18}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6482329993.06 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 233280 |
| The 48 conjugacy class representatives for [1/2.S(3)^5]A(5) |
| Character table for [1/2.S(3)^5]A(5) is not computed |
Intermediate fields
| 5.5.3104644.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15$ | $15$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $15$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.6.10.3 | $x^{6} + 2 x^{5} + 4 x + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.6.6.4 | $x^{6} + 3 x^{4} + 6 x^{3} + 9 x^{2} + 63 x + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.6.6.1 | $x^{6} + 3 x^{5} - 2$ | $3$ | $2$ | $6$ | $C_3^2:C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 881 | Data not computed | ||||||