Normalized defining polynomial
\( x^{15} - 126 x^{13} - 72 x^{12} + 770 x^{11} + 74696 x^{10} - 252486 x^{9} - 2674152 x^{8} + 17570644 x^{7} - 30046744 x^{6} - 13423800 x^{5} + 75319920 x^{4} - 40593800 x^{3} - 17576000 x^{2} + 9464000 x + 2704000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(637858372296192230986633844231104626688000000=2^{24}\cdot 5^{6}\cdot 13^{8}\cdot 37^{5}\cdot 67^{2}\cdot 3095563^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $970.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 37, 67, 3095563$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{52} a^{10} + \frac{1}{13} a^{8} + \frac{3}{26} a^{7} - \frac{5}{26} a^{6} + \frac{6}{13} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{260} a^{11} + \frac{1}{65} a^{9} + \frac{29}{130} a^{8} - \frac{1}{26} a^{7} - \frac{27}{130} a^{6} - \frac{1}{10} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{520} a^{12} + \frac{1}{130} a^{10} + \frac{29}{260} a^{9} - \frac{1}{52} a^{8} + \frac{19}{130} a^{7} - \frac{1}{20} a^{6} - \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{3}{10} a^{3}$, $\frac{1}{5200} a^{13} - \frac{3}{2600} a^{11} + \frac{7}{1300} a^{10} - \frac{1}{104} a^{9} - \frac{11}{50} a^{8} - \frac{443}{2600} a^{7} - \frac{129}{650} a^{6} + \frac{431}{1300} a^{5} + \frac{2}{25} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{7546223283506579291296353988970917388000} a^{14} + \frac{573008612639336834519767305259661}{150924465670131585825927079779418347760} a^{13} + \frac{1242830801578929642272831181566140997}{3773111641753289645648176994485458694000} a^{12} + \frac{1822846960708959264223266976242631807}{1886555820876644822824088497242729347000} a^{11} + \frac{672014277906889699508592052039844389}{150924465670131585825927079779418347760} a^{10} - \frac{12165941167292580808812592751618912511}{1886555820876644822824088497242729347000} a^{9} + \frac{135729309178932248597522662104788529557}{3773111641753289645648176994485458694000} a^{8} - \frac{180859061867117991257741733979380513933}{1886555820876644822824088497242729347000} a^{7} - \frac{361119055193484214387664485601860306419}{1886555820876644822824088497242729347000} a^{6} + \frac{52583775201946795375251095511574274563}{235819477609580602853011062155341168375} a^{5} + \frac{4259961342909602712542483991793999609}{14511967852897267867877603824944071900} a^{4} - \frac{3452116783705095848244088159789520369}{7255983926448633933938801912472035950} a^{3} - \frac{697885425430715349015958797667486661}{2902393570579453573575520764988814380} a^{2} + \frac{506856761881029983547305009271061019}{1451196785289726786787760382494407190} a + \frac{7026884599884001595998268768044115}{145119678528972678678776038249440719}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 234010425716000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 65 conjugacy class representatives for [A(5)^3]S(3)=A(5)wrS(3) are not computed |
| Character table for [A(5)^3]S(3)=A(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | $15$ | R | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.7 | $x^{6} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.11.7 | $x^{6} + 2 x^{2} + 6$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 13.10.8.1 | $x^{10} - 13 x^{5} + 338$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $37$ | 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 37.10.5.1 | $x^{10} - 2738 x^{6} + 1874161 x^{2} - 11719128733$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $67$ | $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{67}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 67.3.0.1 | $x^{3} - x + 16$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 67.4.2.1 | $x^{4} + 1541 x^{2} + 646416$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 67.5.0.1 | $x^{5} - x + 21$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3095563 | Data not computed | ||||||