Normalized defining polynomial
\( x^{15} - 360 x^{13} - 2736 x^{12} + 15004 x^{11} + 371872 x^{10} + 1327176 x^{9} - 12871296 x^{8} - 80152416 x^{7} + 521764864 x^{6} - 260002560 x^{5} - 2313216000 x^{4} + 2618432000 x^{3} + 2403174400 x^{2} - 3598336000 x + 1028096000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6307022116728638404825373947273030733824000000=2^{18}\cdot 5^{6}\cdot 7^{10}\cdot 251^{4}\cdot 2477^{2}\cdot 473117^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1130.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 251, 2477, 473117$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{16} a^{7} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{8} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{9} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{10} - \frac{1}{32} a^{6} + \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1280} a^{11} - \frac{1}{80} a^{8} - \frac{9}{320} a^{7} + \frac{1}{40} a^{6} - \frac{3}{160} a^{5} + \frac{1}{20} a^{4} + \frac{7}{40} a^{3} - \frac{1}{5} a^{2}$, $\frac{1}{2560} a^{12} - \frac{1}{160} a^{9} - \frac{9}{640} a^{8} + \frac{1}{80} a^{7} - \frac{3}{320} a^{6} - \frac{1}{10} a^{5} + \frac{7}{80} a^{4} - \frac{1}{10} a^{3}$, $\frac{1}{51200} a^{13} + \frac{1}{800} a^{10} - \frac{49}{12800} a^{9} - \frac{9}{1600} a^{8} - \frac{123}{6400} a^{7} - \frac{9}{800} a^{6} + \frac{67}{1600} a^{5} - \frac{7}{400} a^{4} - \frac{9}{40} a^{3} + \frac{1}{5} a^{2} + \frac{1}{4} a$, $\frac{1}{271897504549611157775143027164051167679260876800} a^{14} + \frac{530170842986547307859685105250055197601653}{67974376137402789443785756791012791919815219200} a^{13} + \frac{532356817264359571657041288402039519685633}{6797437613740278944378575679101279191981521920} a^{12} + \frac{4559714001984181518715553714925829145335079}{16993594034350697360946439197753197979953804800} a^{11} + \frac{111267658427118235534380765910001434690738343}{67974376137402789443785756791012791919815219200} a^{10} + \frac{8878064105908523360302535591769030505344153}{3398718806870139472189287839550639595990760960} a^{9} + \frac{100754011619101299379247846792490476192330141}{6797437613740278944378575679101279191981521920} a^{8} - \frac{185133774080013782818933957184830514648897967}{8496797017175348680473219598876598989976902400} a^{7} + \frac{287393863872157137638308314127137839123080561}{8496797017175348680473219598876598989976902400} a^{6} - \frac{239742194941633144675566510017207301735196171}{2124199254293837170118304899719149747494225600} a^{5} + \frac{2274848210616672234306369381110823901377851}{24699991328998106629282615113013369156909600} a^{4} + \frac{1394044800442001597719386013530295572955509}{53104981357345929252957622492978743687355640} a^{3} - \frac{26011220436987506902217873425537172316973707}{106209962714691858505915244985957487374711280} a^{2} - \frac{749380617661966158303192432212376295367311}{2655249067867296462647881124648937184367782} a - \frac{637587889690411770177933373535873937048738}{1327624533933648231323940562324468592183891}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 153449554548000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 648000 |
| The 55 conjugacy class representatives for [A(5)^3]3=A(5)wr3 are not computed |
| Character table for [A(5)^3]3=A(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 sibling: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | R | $15$ | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | $15$ | $15$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.2 | $x^{6} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 251 | Data not computed | ||||||
| 2477 | Data not computed | ||||||
| 473117 | Data not computed | ||||||