Properties

Label 15.7.62687010365...0000.1
Degree $15$
Signature $[7, 4]$
Discriminant $2^{18}\cdot 3^{24}\cdot 5^{6}\cdot 17^{4}\cdot 37^{2}\cdot 521\cdot 811^{4}\cdot 4585573^{2}$
Root discriminant $6116.16$
Ramified primes $2, 3, 5, 17, 37, 521, 811, 4585573$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T101

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-86740303872000, -227693297664000, -257781340569600, -164230567526400, -64404675624960, -15966575400960, -2464952159232, -219580868736, -7864615296, 421080120, 55530624, 1586292, -39744, -2484, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 2484*x^13 - 39744*x^12 + 1586292*x^11 + 55530624*x^10 + 421080120*x^9 - 7864615296*x^8 - 219580868736*x^7 - 2464952159232*x^6 - 15966575400960*x^5 - 64404675624960*x^4 - 164230567526400*x^3 - 257781340569600*x^2 - 227693297664000*x - 86740303872000)
 
gp: K = bnfinit(x^15 - 2484*x^13 - 39744*x^12 + 1586292*x^11 + 55530624*x^10 + 421080120*x^9 - 7864615296*x^8 - 219580868736*x^7 - 2464952159232*x^6 - 15966575400960*x^5 - 64404675624960*x^4 - 164230567526400*x^3 - 257781340569600*x^2 - 227693297664000*x - 86740303872000, 1)
 

Normalized defining polynomial

\( x^{15} - 2484 x^{13} - 39744 x^{12} + 1586292 x^{11} + 55530624 x^{10} + 421080120 x^{9} - 7864615296 x^{8} - 219580868736 x^{7} - 2464952159232 x^{6} - 15966575400960 x^{5} - 64404675624960 x^{4} - 164230567526400 x^{3} - 257781340569600 x^{2} - 227693297664000 x - 86740303872000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[7, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(626870103658230384189023990781533773422403883667456000000=2^{18}\cdot 3^{24}\cdot 5^{6}\cdot 17^{4}\cdot 37^{2}\cdot 521\cdot 811^{4}\cdot 4585573^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $6116.16$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 17, 37, 521, 811, 4585573$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} + \frac{1}{10} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{160} a^{7} - \frac{1}{40} a^{5} - \frac{1}{20} a^{4} - \frac{3}{40} a^{3} - \frac{1}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{3200} a^{8} - \frac{9}{800} a^{6} + \frac{1}{50} a^{5} - \frac{99}{800} a^{4} + \frac{6}{25} a^{3} + \frac{23}{400} a^{2} + \frac{1}{5}$, $\frac{1}{102400} a^{9} - \frac{69}{25600} a^{7} - \frac{9}{1600} a^{6} - \frac{579}{25600} a^{5} - \frac{39}{800} a^{4} + \frac{1303}{12800} a^{3} + \frac{33}{160} a^{2} + \frac{41}{160} a - \frac{1}{4}$, $\frac{1}{6963200} a^{10} + \frac{123}{1740800} a^{8} + \frac{191}{108800} a^{7} - \frac{2371}{1740800} a^{6} - \frac{19}{10880} a^{5} + \frac{5671}{51200} a^{4} + \frac{389}{3200} a^{3} + \frac{237}{3200} a^{2} + \frac{3}{16} a - \frac{2}{5}$, $\frac{1}{1114112000} a^{11} - \frac{1}{27852800} a^{10} + \frac{599}{278528000} a^{9} + \frac{1943}{34816000} a^{8} + \frac{309773}{278528000} a^{7} + \frac{11331}{2048000} a^{6} - \frac{43961}{5570560} a^{5} + \frac{28583}{1024000} a^{4} + \frac{61987}{256000} a^{3} - \frac{267}{2000} a^{2} - \frac{2429}{6400} a + \frac{137}{800}$, $\frac{1}{22282240000} a^{12} + \frac{199}{5570560000} a^{10} + \frac{429}{348160000} a^{9} - \frac{461107}{5570560000} a^{8} + \frac{499293}{174080000} a^{7} + \frac{304067}{557056000} a^{6} + \frac{2294833}{174080000} a^{5} - \frac{198743}{5120000} a^{4} + \frac{156493}{640000} a^{3} + \frac{4387}{128000} a^{2} - \frac{1617}{4000} a + \frac{133}{400}$, $\frac{1}{44564480000000} a^{13} - \frac{3}{278528000000} a^{12} + \frac{67}{655360000000} a^{11} + \frac{27909}{696320000000} a^{10} + \frac{2848413}{11141120000000} a^{9} - \frac{5772241}{174080000000} a^{8} - \frac{3119941413}{1114112000000} a^{7} - \frac{524655837}{348160000000} a^{6} + \frac{8462053623}{348160000000} a^{5} - \frac{90048349}{2560000000} a^{4} - \frac{41918883}{256000000} a^{3} - \frac{842019}{8000000} a^{2} + \frac{881233}{3200000} a - \frac{193321}{400000}$, $\frac{1}{45634027520000000} a^{14} - \frac{43}{5704253440000000} a^{13} - \frac{233181}{11408506880000000} a^{12} + \frac{410181}{1426063360000000} a^{11} + \frac{134850397}{11408506880000000} a^{10} + \frac{3973529093}{1426063360000000} a^{9} + \frac{107407592103}{5704253440000000} a^{8} - \frac{1131421813779}{713031680000000} a^{7} - \frac{336149837709}{356515840000000} a^{6} + \frac{239357587227}{11141120000000} a^{5} + \frac{3487909853}{1310720000000} a^{4} + \frac{5995148013}{32768000000} a^{3} - \frac{2147622503}{16384000000} a^{2} + \frac{1062309}{40960000} a + \frac{5079793}{51200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 104236366388000000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T101:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 5184000
The 133 conjugacy class representatives for [S(5)^3]3=S(5)wr3 are not computed
Character table for [S(5)^3]3=S(5)wr3 is not computed

Intermediate fields

\(\Q(\zeta_{9})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ $15$ R ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }$ $15$ ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.1$x^{6} + 4 x^{4} + 4 x^{2} - 8$$2$$3$$9$$C_6$$[3]^{3}$
2.6.9.1$x^{6} + 4 x^{4} + 4 x^{2} - 8$$2$$3$$9$$C_6$$[3]^{3}$
3Data not computed
$5$5.3.0.1$x^{3} - x + 2$$1$$3$$0$$C_3$$[\ ]^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
5.6.3.2$x^{6} - 25 x^{2} + 250$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$17$17.5.4.1$x^{5} - 17$$5$$1$$4$$F_5$$[\ ]_{5}^{4}$
17.5.0.1$x^{5} - x + 6$$1$$5$$0$$C_5$$[\ ]^{5}$
17.5.0.1$x^{5} - x + 6$$1$$5$$0$$C_5$$[\ ]^{5}$
$37$$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{37}$$x + 2$$1$$1$$0$Trivial$[\ ]$
37.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.4.2.2$x^{4} - 37 x^{2} + 6845$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
37.5.0.1$x^{5} - x + 13$$1$$5$$0$$C_5$$[\ ]^{5}$
521Data not computed
811Data not computed
4585573Data not computed