Normalized defining polynomial
\( x^{15} - 148 x^{13} - 2 x^{12} + 9164 x^{11} + 196 x^{10} - 303942 x^{9} - 7001 x^{8} + 5695781 x^{7} + 103900 x^{6} - 57180412 x^{5} - 407256 x^{4} + 240215638 x^{3} - 2362248 x^{2} - 5490 x + 27 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(62285142048708605347358118488040529=7^{10}\cdot 3848209^{2}\cdot 3858721^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $208.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 3848209, 3858721$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{48} a^{8} + \frac{1}{48} a^{7} + \frac{1}{6} a^{6} + \frac{11}{24} a^{5} - \frac{5}{12} a^{4} - \frac{11}{24} a^{3} + \frac{5}{24} a^{2} + \frac{1}{48} a + \frac{1}{16}$, $\frac{1}{192} a^{9} - \frac{1}{96} a^{8} + \frac{5}{192} a^{7} + \frac{47}{96} a^{6} + \frac{5}{96} a^{5} + \frac{19}{96} a^{4} - \frac{5}{48} a^{3} + \frac{67}{192} a^{2} + \frac{1}{4} a + \frac{13}{64}$, $\frac{1}{2304} a^{10} - \frac{1}{2304} a^{9} + \frac{1}{768} a^{8} - \frac{95}{768} a^{7} + \frac{13}{288} a^{6} + \frac{7}{16} a^{5} - \frac{31}{128} a^{4} + \frac{239}{2304} a^{3} - \frac{269}{2304} a^{2} - \frac{227}{768} a + \frac{111}{256}$, $\frac{1}{9216} a^{11} + \frac{1}{4608} a^{9} - \frac{5}{512} a^{8} + \frac{11}{9216} a^{7} - \frac{533}{1152} a^{6} + \frac{11}{1536} a^{5} + \frac{449}{9216} a^{4} - \frac{709}{1536} a^{3} - \frac{1819}{4608} a^{2} + \frac{469}{1536} a - \frac{337}{1024}$, $\frac{1}{110592} a^{12} - \frac{1}{36864} a^{11} + \frac{1}{55296} a^{10} - \frac{1}{384} a^{9} + \frac{665}{110592} a^{8} + \frac{3959}{110592} a^{7} - \frac{5473}{18432} a^{6} - \frac{20101}{110592} a^{5} - \frac{4505}{12288} a^{4} - \frac{10583}{27648} a^{3} + \frac{33}{128} a^{2} + \frac{2821}{12288} a + \frac{401}{4096}$, $\frac{1}{5308416} a^{13} + \frac{11}{2654208} a^{12} + \frac{215}{5308416} a^{11} - \frac{119}{2654208} a^{10} + \frac{3257}{5308416} a^{9} - \frac{1819}{663552} a^{8} - \frac{649543}{5308416} a^{7} + \frac{751013}{5308416} a^{6} - \frac{446351}{2654208} a^{5} - \frac{1866677}{5308416} a^{4} - \frac{52247}{1327104} a^{3} + \frac{130469}{589824} a^{2} + \frac{6335}{36864} a - \frac{81719}{196608}$, $\frac{1}{254803968} a^{14} - \frac{13}{254803968} a^{13} + \frac{7}{84934656} a^{12} - \frac{275}{254803968} a^{11} + \frac{12739}{254803968} a^{10} - \frac{18379}{28311552} a^{9} + \frac{615467}{84934656} a^{8} - \frac{12005107}{127401984} a^{7} + \frac{63024595}{254803968} a^{6} - \frac{18267977}{84934656} a^{5} - \frac{109141213}{254803968} a^{4} - \frac{110395295}{254803968} a^{3} - \frac{12030367}{28311552} a^{2} - \frac{13737013}{28311552} a + \frac{2903749}{9437184}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1308217127750 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 32 conjugacy class representatives for [D(5)^3]3=D(5)wr3 |
| Character table for [D(5)^3]3=D(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | $15$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 3848209 | Data not computed | ||||||
| 3858721 | Data not computed | ||||||