Normalized defining polynomial
\( x^{15} - 5 x^{14} - 75 x^{13} + 271 x^{12} + 2056 x^{11} - 3072 x^{10} - 28992 x^{9} - 28869 x^{8} + 188292 x^{7} + 579191 x^{6} + 359939 x^{5} - 1857141 x^{4} - 5503034 x^{3} - 7914792 x^{2} - 6186220 x - 2598643 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(476081340356745953854630586535361=61^{4}\cdot 139^{2}\cdot 397^{4}\cdot 267661^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $150.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 139, 397, 267661$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{13} a^{12} + \frac{6}{13} a^{11} + \frac{1}{13} a^{10} - \frac{6}{13} a^{9} + \frac{3}{13} a^{8} - \frac{2}{13} a^{7} + \frac{1}{13} a^{6} + \frac{4}{13} a^{5} - \frac{4}{13} a^{4} + \frac{1}{13} a^{3} + \frac{4}{13} a^{2} + \frac{3}{13} a - \frac{6}{13}$, $\frac{1}{13} a^{13} + \frac{4}{13} a^{11} + \frac{1}{13} a^{10} + \frac{6}{13} a^{8} - \frac{2}{13} a^{6} - \frac{2}{13} a^{5} - \frac{1}{13} a^{4} - \frac{2}{13} a^{3} + \frac{5}{13} a^{2} + \frac{2}{13} a - \frac{3}{13}$, $\frac{1}{171288685689004148332368663312197} a^{14} - \frac{6405572353332639823579013522870}{171288685689004148332368663312197} a^{13} + \frac{2381568148423421128096608822851}{171288685689004148332368663312197} a^{12} + \frac{79002009146351238202908970597885}{171288685689004148332368663312197} a^{11} - \frac{81226514511386409584993757575933}{171288685689004148332368663312197} a^{10} - \frac{42681566077371714038076842650044}{171288685689004148332368663312197} a^{9} - \frac{58831936103456657228941575712082}{171288685689004148332368663312197} a^{8} + \frac{20954000343290767081772234985283}{171288685689004148332368663312197} a^{7} - \frac{70463695119345487297980655157658}{171288685689004148332368663312197} a^{6} + \frac{4127469047942876215546045373787}{171288685689004148332368663312197} a^{5} - \frac{76525426936662489005479943271977}{171288685689004148332368663312197} a^{4} - \frac{215932000427497102303201309836}{13176052745308011410182204870169} a^{3} + \frac{50809541216660288691160591421760}{171288685689004148332368663312197} a^{2} - \frac{6341912203879477354378385798380}{13176052745308011410182204870169} a + \frac{15654867151679184384238317914171}{171288685689004148332368663312197}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19135723147.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 466560 |
| The 60 conjugacy class representatives for 1/2[S(3)^5]S(5) are not computed |
| Character table for 1/2[S(3)^5]S(5) is not computed |
Intermediate fields
| 5.5.24217.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | $15$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 61 | Data not computed | ||||||
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 139.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 139.3.2.2 | $x^{3} + 556$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 139.6.0.1 | $x^{6} - x + 21$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 397 | Data not computed | ||||||
| 267661 | Data not computed | ||||||