Normalized defining polynomial
\( x^{15} - 1026 x^{13} - 8208 x^{12} + 229632 x^{11} + 3920352 x^{10} + 9892440 x^{9} - 257694912 x^{8} - 3119550496 x^{7} - 17240494976 x^{6} - 55720224640 x^{5} - 112357048320 x^{4} - 143254054400 x^{3} - 112427980800 x^{2} - 49652736000 x - 9457664000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(47320369987690955076753433023568430483460751360000=2^{18}\cdot 5^{4}\cdot 13^{10}\cdot 2131^{2}\cdot 2309^{4}\cdot 127399^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2049.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 2131, 2309, 127399$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{400} a^{7} - \frac{1}{200} a^{6} - \frac{1}{40} a^{5} + \frac{7}{100} a^{4} + \frac{3}{25} a^{3} + \frac{1}{50} a^{2} + \frac{1}{10} a - \frac{1}{5}$, $\frac{1}{4000} a^{8} - \frac{7}{2000} a^{6} + \frac{1}{500} a^{5} - \frac{31}{250} a^{4} - \frac{31}{250} a^{3} + \frac{7}{500} a^{2} + \frac{1}{5} a - \frac{11}{25}$, $\frac{1}{16000} a^{9} + \frac{3}{8000} a^{7} - \frac{1}{500} a^{6} - \frac{3}{500} a^{5} + \frac{1}{250} a^{4} - \frac{273}{2000} a^{3} - \frac{1}{25} a^{2} - \frac{31}{100} a + \frac{2}{5}$, $\frac{1}{32000} a^{10} - \frac{1}{16000} a^{8} - \frac{1}{1000} a^{7} + \frac{1}{2000} a^{6} + \frac{223}{4000} a^{4} - \frac{73}{500} a^{3} - \frac{169}{1000} a^{2} + \frac{11}{25}$, $\frac{1}{640000} a^{11} + \frac{1}{80000} a^{10} + \frac{9}{320000} a^{9} - \frac{1}{10000} a^{8} - \frac{7}{16000} a^{7} - \frac{249}{20000} a^{6} - \frac{433}{80000} a^{5} - \frac{263}{5000} a^{4} + \frac{1053}{10000} a^{3} - \frac{221}{1000} a^{2} - \frac{113}{1000} a - \frac{3}{50}$, $\frac{1}{1280000} a^{12} - \frac{3}{640000} a^{10} + \frac{1}{40000} a^{9} + \frac{19}{160000} a^{8} + \frac{13}{20000} a^{7} + \frac{211}{32000} a^{6} - \frac{453}{20000} a^{5} + \frac{13}{625} a^{4} - \frac{59}{1250} a^{3} - \frac{443}{2000} a^{2} + \frac{24}{125} a + \frac{12}{25}$, $\frac{1}{25600000000} a^{13} - \frac{231}{640000000} a^{12} + \frac{5367}{12800000000} a^{11} + \frac{11601}{800000000} a^{10} - \frac{15019}{800000000} a^{9} + \frac{38231}{800000000} a^{8} - \frac{515473}{640000000} a^{7} + \frac{1203893}{100000000} a^{6} + \frac{14196387}{800000000} a^{5} - \frac{20025577}{200000000} a^{4} - \frac{8167559}{40000000} a^{3} + \frac{778151}{5000000} a^{2} + \frac{941409}{2000000} a + \frac{93167}{500000}$, $\frac{1}{3276800000000} a^{14} - \frac{11}{819200000000} a^{13} + \frac{59847}{1638400000000} a^{12} - \frac{254863}{409600000000} a^{11} + \frac{735277}{102400000000} a^{10} - \frac{2376493}{102400000000} a^{9} - \frac{6808261}{409600000000} a^{8} + \frac{52549009}{102400000000} a^{7} - \frac{188673389}{102400000000} a^{6} - \frac{37923983}{3200000000} a^{5} + \frac{2632556113}{25600000000} a^{4} - \frac{268123839}{1280000000} a^{3} - \frac{49829763}{1280000000} a^{2} - \frac{9970771}{32000000} a - \frac{89067}{16000000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138611432489000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | $15$ | $15$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | $15$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13 | Data not computed | ||||||
| 2131 | Data not computed | ||||||
| 2309 | Data not computed | ||||||
| 127399 | Data not computed | ||||||