Normalized defining polynomial
\( x^{15} - 6 x^{14} - 15 x^{13} + 195 x^{12} - 177 x^{11} - 1944 x^{10} + 125 x^{9} + 17799 x^{8} + 6408 x^{7} - 65914 x^{6} - 5610 x^{5} + 101934 x^{4} - 28655 x^{3} - 49518 x^{2} + 36987 x - 10313 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46147275726319772173643452416=2^{12}\cdot 3^{20}\cdot 17^{2}\cdot 3343733^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 3343733$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a - \frac{3}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{7} + \frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{6748519705752712771539719576} a^{14} - \frac{57687662051303865511786591}{3374259852876356385769859788} a^{13} - \frac{24928730776682143393886931}{3374259852876356385769859788} a^{12} - \frac{139992192397915168659054741}{6748519705752712771539719576} a^{11} - \frac{8318700189758705018700198}{843564963219089096442464947} a^{10} - \frac{4938993344453734438406135}{3374259852876356385769859788} a^{9} + \frac{1133969918463546255397486459}{6748519705752712771539719576} a^{8} + \frac{863383405312484557272296049}{6748519705752712771539719576} a^{7} - \frac{400941344851688978121541111}{6748519705752712771539719576} a^{6} - \frac{843551196745092140930699683}{6748519705752712771539719576} a^{5} + \frac{590727105052776965663285057}{1687129926438178192884929894} a^{4} + \frac{1672095461468469832047215157}{6748519705752712771539719576} a^{3} + \frac{837891947712118826020024035}{6748519705752712771539719576} a^{2} + \frac{677123798120556753316692013}{1687129926438178192884929894} a - \frac{2557550027450659471470868729}{6748519705752712771539719576}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 574507211.585 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 32 conjugacy class representatives for [D(5)^3]3=D(5)wr3 |
| Character table for [D(5)^3]3=D(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | $15$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | $15$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{7}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 17.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3343733 | Data not computed | ||||||