Normalized defining polynomial
\( x^{15} - x^{14} - 4 x^{13} - 35 x^{12} - 24 x^{11} - 71 x^{10} + 899 x^{9} + 1896 x^{8} - 6905 x^{7} - 1614 x^{6} + 18939 x^{5} - 416 x^{4} - 14084 x^{3} - 28970 x^{2} + 3401 x - 97 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(44896833821697857666015625=3^{8}\cdot 5^{14}\cdot 257^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 257$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{27218067468613304559217425912965} a^{14} - \frac{11270715585168278748890875547688}{27218067468613304559217425912965} a^{13} - \frac{13196050044492112032112675520898}{27218067468613304559217425912965} a^{12} + \frac{8854474492710318354675418928256}{27218067468613304559217425912965} a^{11} + \frac{12939910210250256755545832288199}{27218067468613304559217425912965} a^{10} + \frac{7190360376672158430726380526046}{27218067468613304559217425912965} a^{9} + \frac{9155791862553261112926740635082}{27218067468613304559217425912965} a^{8} + \frac{7670371265551947160741267869582}{27218067468613304559217425912965} a^{7} - \frac{5313976626232525642583451048304}{27218067468613304559217425912965} a^{6} - \frac{1089761994906085647262960238121}{27218067468613304559217425912965} a^{5} + \frac{8363950670905993194031930808476}{27218067468613304559217425912965} a^{4} + \frac{12074209086281148152216739872722}{27218067468613304559217425912965} a^{3} + \frac{10733924086901297729576879699557}{27218067468613304559217425912965} a^{2} - \frac{8137864878522184011896983155539}{27218067468613304559217425912965} a - \frac{5385518685404675254802174961851}{27218067468613304559217425912965}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36339727.7705 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6000 |
| The 40 conjugacy class representatives for [D(5)^3]S(3)=D(5)wrS(3) |
| Character table for [D(5)^3]S(3)=D(5)wrS(3) is not computed |
Intermediate fields
| 3.3.257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.5.0.1 | $x^{5} - x + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 3.10.8.1 | $x^{10} - 3 x^{5} + 18$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.10.12.11 | $x^{10} + 5 x^{7} + 10 x^{5} + 25 x^{4} + 25 x^{2} + 25$ | $5$ | $2$ | $12$ | $C_5^2 : C_4$ | $[3/2, 3/2]_{2}^{2}$ | |
| 257 | Data not computed | ||||||