Normalized defining polynomial
\( x^{15} - 270 x^{13} - 504 x^{12} + 7942 x^{11} - 91568 x^{10} - 296010 x^{9} + 2916576 x^{8} + 6356616 x^{7} - 16677328 x^{6} - 58165280 x^{5} + 4550400 x^{4} + 153260000 x^{3} + 171145600 x^{2} + 70784000 x + 10112000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(39319960333779840237315944809779298304000000=2^{23}\cdot 5^{6}\cdot 37^{5}\cdot 79^{4}\cdot 233^{2}\cdot 857^{2}\cdot 1669^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $805.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 79, 233, 857, 1669$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{160} a^{11} - \frac{1}{16} a^{9} - \frac{1}{40} a^{8} + \frac{11}{80} a^{7} - \frac{1}{20} a^{6} - \frac{5}{16} a^{5} + \frac{7}{20} a^{4} + \frac{1}{10} a^{3} + \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{12} - \frac{1}{40} a^{9} + \frac{1}{80} a^{8} + \frac{1}{5} a^{7} + \frac{1}{16} a^{6} - \frac{3}{20} a^{5} - \frac{1}{40} a^{4} - \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{1600} a^{13} - \frac{1}{400} a^{10} + \frac{21}{800} a^{9} - \frac{3}{100} a^{8} - \frac{7}{160} a^{7} - \frac{23}{200} a^{6} + \frac{179}{400} a^{5} + \frac{99}{200} a^{4} + \frac{2}{5} a^{3} + \frac{3}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{1289905992697880020770998996735622188022176000} a^{14} + \frac{4757586661233045628304248222637875987917}{32247649817447000519274974918390554700554400} a^{13} - \frac{11607010891049605356120124363239289080363}{5159623970791520083083995986942488752088704} a^{12} - \frac{436564579113827309398957467379152876897463}{161238249087235002596374874591952773502772000} a^{11} + \frac{11298376585340523323449808433433832884797611}{644952996348940010385499498367811094011088000} a^{10} + \frac{695865028549957923742413535972062463223091}{40309562271808750649093718647988193375693000} a^{9} - \frac{696834279737582359448221403459579370318401}{128990599269788002077099899673562218802217600} a^{8} - \frac{8820617696515763744463061310590803813324649}{80619124543617501298187437295976386751386000} a^{7} - \frac{22053754615992808578839101206619346139271663}{161238249087235002596374874591952773502772000} a^{6} + \frac{9127428907085282261790281068664340254687617}{80619124543617501298187437295976386751386000} a^{5} + \frac{39770477172192674293639950985103617284787}{403095622718087506490937186479881933756930} a^{4} + \frac{345037500374045497960612953275078045966933}{1007739056795218766227342966199704834392325} a^{3} + \frac{516412284353674517631199353884769318121907}{1612382490872350025963748745919527735027720} a^{2} - \frac{56395239876879351130456904815278274459039}{201547811359043753245468593239940966878465} a + \frac{3727272815071915658189664853140650700}{40309562271808750649093718647988193375693}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 263530666050000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.4 | $x^{6} + 6 x^{4} + 4 x^{2} + 4 x + 14$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.10.1 | $x^{6} + 2 x^{5} + 2 x^{4} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37 | Data not computed | ||||||
| $79$ | 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 79.5.4.1 | $x^{5} - 79$ | $5$ | $1$ | $4$ | $D_{5}$ | $[\ ]_{5}^{2}$ | |
| 233 | Data not computed | ||||||
| 857 | Data not computed | ||||||
| 1669 | Data not computed | ||||||