Normalized defining polynomial
\( x^{15} - x^{14} - 93 x^{13} + 261 x^{12} + 4336 x^{11} - 19308 x^{10} - 96464 x^{9} + 582272 x^{8} + 1027267 x^{7} - 8875651 x^{6} - 506357 x^{5} + 59519321 x^{4} - 50194649 x^{3} - 134712315 x^{2} + 193450599 x - 35195499 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2581892476484237352007951974400000000=2^{24}\cdot 5^{8}\cdot 13^{10}\cdot 619^{2}\cdot 2731^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $267.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 619, 2731$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{18} a^{13} + \frac{5}{18} a^{12} - \frac{1}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{9} a^{7} - \frac{2}{9} a^{6} + \frac{1}{18} a^{5} - \frac{7}{18} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{18} a - \frac{1}{6}$, $\frac{1}{260544515485650383574986612811916881851633760804} a^{14} - \frac{401043162138909560876055075950968960444067263}{65136128871412595893746653202979220462908440201} a^{13} + \frac{21972649187315337658056801916484083326380456233}{86848171828550127858328870937305627283877920268} a^{12} - \frac{51918082792642737477062231757639366163473826}{804149739153241924614156212382459511887758521} a^{11} + \frac{4686934911385962233743425215617583042584344490}{65136128871412595893746653202979220462908440201} a^{10} - \frac{3342677677386852398828298315012813097816095457}{7237347652379177321527405911442135606989826689} a^{9} + \frac{30112398087739447939758689690526993737345085520}{65136128871412595893746653202979220462908440201} a^{8} + \frac{12605687678231601797967930162712724047518508511}{65136128871412595893746653202979220462908440201} a^{7} - \frac{39670600236563581002283727310906138396652309901}{260544515485650383574986612811916881851633760804} a^{6} + \frac{17706980907562799764381935244325016916233781544}{65136128871412595893746653202979220462908440201} a^{5} - \frac{66979787783365165261494030201242661348590898989}{260544515485650383574986612811916881851633760804} a^{4} - \frac{30162000399952048890319242492006375096090706741}{65136128871412595893746653202979220462908440201} a^{3} - \frac{72756521189952694516072059915698553144563538017}{260544515485650383574986612811916881851633760804} a^{2} - \frac{5994157239712339578663362955420997647294828224}{21712042957137531964582217734326406820969480067} a - \frac{2952369209321383333451644412541001279356875105}{28949390609516709286109623645768542427959306756}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8563384625730 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12000 |
| The 32 conjugacy class representatives for [1/2.F(5)^3]3 |
| Character table for [1/2.F(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | $15$ | $15$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.225 | $x^{12} - 12 x^{11} + 16 x^{10} - 4 x^{9} - 10 x^{8} + 16 x^{7} - 8 x^{4} - 8 x^{2} + 8$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3]^{6}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.4.3.3 | $x^{4} + 10$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 13 | Data not computed | ||||||
| 619 | Data not computed | ||||||
| 2731 | Data not computed | ||||||