Normalized defining polynomial
\( x^{15} - 475 x^{13} - 950 x^{12} + 90615 x^{11} + 345483 x^{10} - 8511525 x^{9} - 47194570 x^{8} + 379781060 x^{7} + 2920931515 x^{6} - 5367093328 x^{5} - 75950352750 x^{4} - 70922827300 x^{3} + 500953374400 x^{2} + 699537508000 x - 655371507200 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(23150300260704738550964709538721532446289062500000000=2^{8}\cdot 5^{20}\cdot 61^{4}\cdot 89^{4}\cdot 127^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3097.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 61, 89, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{11} + \frac{7}{32} a^{8} - \frac{3}{32} a^{7} + \frac{1}{16} a^{6} + \frac{9}{32} a^{5} - \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{3}{8} a^{2}$, $\frac{1}{160} a^{13} + \frac{3}{32} a^{9} + \frac{3}{160} a^{8} - \frac{1}{2} a^{7} - \frac{3}{32} a^{6} + \frac{3}{16} a^{5} - \frac{1}{16} a^{4} - \frac{1}{20} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{429812495444398503165626996378667607759399553428739840} a^{14} + \frac{463140952029838226788773268524158403580801911691777}{429812495444398503165626996378667607759399553428739840} a^{13} + \frac{417672933064670870255876275327541174923072029895215}{42981249544439850316562699637866760775939955342873984} a^{12} - \frac{21511334357969151079073851578564105995295852108379}{5372656193054981289570337454733345096992494417859248} a^{11} + \frac{1213824425755232913832723128832954862532217131322875}{85962499088879700633125399275733521551879910685747968} a^{10} - \frac{21096556979924143238217922562238171135571298369252231}{214906247722199251582813498189333803879699776714369920} a^{9} - \frac{84003525878205211416129583935780339058784253210844259}{429812495444398503165626996378667607759399553428739840} a^{8} - \frac{28049716087782304746905524624710654610121976802718441}{85962499088879700633125399275733521551879910685747968} a^{7} - \frac{10004357435812067667759446170520746888808678854383301}{85962499088879700633125399275733521551879910685747968} a^{6} + \frac{17004247091062206183941776521476282955634739187696645}{42981249544439850316562699637866760775939955342873984} a^{5} + \frac{4181784255079837189408077466418351596180848055632121}{214906247722199251582813498189333803879699776714369920} a^{4} + \frac{32785411416360549429437968831848538916170820878270441}{107453123861099625791406749094666901939849888357184960} a^{3} + \frac{639564774789200393480204034531438763511680798474375}{2686328096527490644785168727366672548496247208929624} a^{2} - \frac{171232386658829093350680370076526736045810041651145}{2686328096527490644785168727366672548496247208929624} a - \frac{1043535446050825171216331862559314246568843680662}{335791012065936330598146090920834068562030901116203}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4927873926650000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 28 conjugacy class representatives for [1/2.D(5)^3]3 |
| Character table for [1/2.D(5)^3]3 is not computed |
Intermediate fields
| 3.3.16129.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | $15$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}$ | $15$ | $15$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| $61$ | 61.5.4.4 | $x^{5} + 488$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 89 | Data not computed | ||||||
| 127 | Data not computed | ||||||