Normalized defining polynomial
\( x^{15} - 936 x^{13} - 7488 x^{12} + 193772 x^{11} + 3324992 x^{10} + 12209760 x^{9} - 126963072 x^{8} - 1735002176 x^{7} - 9717254656 x^{6} - 31462307840 x^{5} - 63453265920 x^{4} - 80902246400 x^{3} - 63493324800 x^{2} - 28041216000 x - 5341184000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(21081131822384482680088939852611594757696000000=2^{12}\cdot 5^{6}\cdot 31^{10}\cdot 97^{2}\cdot 163^{4}\cdot 245981^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1225.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31, 97, 163, 245981$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{40} a^{5} - \frac{1}{20} a^{3} + \frac{1}{10} a^{2}$, $\frac{1}{80} a^{6} - \frac{1}{40} a^{4} + \frac{1}{20} a^{3} - \frac{1}{2} a$, $\frac{1}{320} a^{7} - \frac{1}{160} a^{6} + \frac{1}{40} a^{4} + \frac{7}{80} a^{3} - \frac{9}{40} a^{2}$, $\frac{1}{3200} a^{8} - \frac{1}{800} a^{6} - \frac{1}{100} a^{5} - \frac{29}{800} a^{4} + \frac{7}{100} a^{3} + \frac{31}{200} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{6400} a^{9} - \frac{1}{1600} a^{7} - \frac{1}{200} a^{6} - \frac{9}{1600} a^{5} + \frac{7}{200} a^{4} + \frac{21}{400} a^{3} + \frac{1}{20} a^{2} - \frac{2}{5} a$, $\frac{1}{25600} a^{10} - \frac{1}{6400} a^{8} - \frac{1}{800} a^{7} - \frac{9}{6400} a^{6} + \frac{1}{400} a^{5} + \frac{21}{1600} a^{4} - \frac{1}{10} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{512000} a^{11} - \frac{9}{128000} a^{9} + \frac{1}{16000} a^{8} + \frac{103}{128000} a^{7} - \frac{47}{8000} a^{6} + \frac{57}{6400} a^{5} + \frac{59}{1000} a^{4} + \frac{117}{1000} a^{3} + \frac{3}{250} a^{2} + \frac{41}{100} a + \frac{12}{25}$, $\frac{1}{10240000} a^{12} - \frac{1}{1024000} a^{11} - \frac{29}{2560000} a^{10} + \frac{9}{1280000} a^{9} - \frac{217}{2560000} a^{8} + \frac{389}{1280000} a^{7} - \frac{139}{128000} a^{6} - \frac{2201}{320000} a^{5} + \frac{1849}{40000} a^{4} + \frac{411}{10000} a^{3} + \frac{63}{400} a^{2} - \frac{251}{1000} a + \frac{9}{50}$, $\frac{1}{5120000000} a^{13} - \frac{3}{64000000} a^{12} + \frac{103}{640000000} a^{11} + \frac{3011}{160000000} a^{10} - \frac{85717}{1280000000} a^{9} - \frac{5331}{40000000} a^{8} - \frac{6841}{6400000} a^{7} + \frac{23377}{5000000} a^{6} + \frac{653411}{80000000} a^{5} + \frac{51711}{5000000} a^{4} + \frac{101387}{1000000} a^{3} + \frac{8807}{125000} a^{2} + \frac{11963}{50000} a - \frac{2331}{12500}$, $\frac{1}{1310720000000} a^{14} - \frac{11}{327680000000} a^{13} - \frac{1027}{163840000000} a^{12} - \frac{23817}{40960000000} a^{11} - \frac{3066469}{327680000000} a^{10} - \frac{3831781}{81920000000} a^{9} + \frac{578721}{40960000000} a^{8} - \frac{7189667}{5120000000} a^{7} - \frac{81708817}{20480000000} a^{6} - \frac{23730767}{5120000000} a^{5} - \frac{50747209}{1280000000} a^{4} - \frac{2009273}{64000000} a^{3} - \frac{14392341}{64000000} a^{2} + \frac{606203}{1600000} a - \frac{207469}{800000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 141303339610000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 71 conjugacy class representatives for [1/2.S(5)^3]3 are not computed |
| Character table for [1/2.S(5)^3]3 is not computed |
Intermediate fields
| 3.3.961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | $15$ | $15$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.5.0.1}{5} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.4.5 | $x^{4} + 2 x + 2$ | $4$ | $1$ | $4$ | $S_4$ | $[4/3, 4/3]_{3}^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31 | Data not computed | ||||||
| $97$ | $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{97}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 97.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 163 | Data not computed | ||||||
| 245981 | Data not computed | ||||||