Normalized defining polynomial
\( x^{15} - 405 x^{13} - 1332 x^{12} + 36049 x^{11} + 100486 x^{10} - 2560086 x^{9} - 217332 x^{8} + 184136684 x^{7} - 836759048 x^{6} - 741890240 x^{5} + 7849238400 x^{4} - 5671808000 x^{3} - 16999884800 x^{2} + 26105856000 x - 9945088000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(209861185704489525754484343252978976463040512000000=2^{18}\cdot 5^{6}\cdot 7^{2}\cdot 13^{2}\cdot 23\cdot 229^{5}\cdot 607^{4}\cdot 1773841^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2263.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 13, 23, 229, 607, 1773841$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{10} + \frac{3}{32} a^{8} - \frac{1}{8} a^{7} - \frac{7}{32} a^{6} - \frac{5}{16} a^{5} + \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{640} a^{11} - \frac{1}{128} a^{9} - \frac{13}{160} a^{8} + \frac{129}{640} a^{7} + \frac{3}{320} a^{6} + \frac{157}{320} a^{5} - \frac{53}{160} a^{4} - \frac{29}{160} a^{3} - \frac{1}{80} a^{2}$, $\frac{1}{2560} a^{12} - \frac{1}{512} a^{10} - \frac{13}{640} a^{9} + \frac{129}{2560} a^{8} + \frac{163}{1280} a^{7} - \frac{163}{1280} a^{6} + \frac{27}{640} a^{5} - \frac{189}{640} a^{4} - \frac{41}{320} a^{3} - \frac{1}{2} a$, $\frac{1}{51200} a^{13} - \frac{1}{10240} a^{11} + \frac{67}{12800} a^{10} + \frac{2049}{51200} a^{9} - \frac{2557}{25600} a^{8} + \frac{157}{25600} a^{7} - \frac{2133}{12800} a^{6} - \frac{829}{12800} a^{5} - \frac{281}{6400} a^{4} - \frac{13}{40} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{2310419989340024326404229356663209894065765168680550400} a^{14} + \frac{99027221601331825708948996267517303814688383747}{14440124933375152040026433479145061837911032304253440} a^{13} + \frac{61475362705270823307292561094285985306644118032559}{462083997868004865280845871332641978813153033736110080} a^{12} + \frac{283792349209842474441024903802721177606545003514907}{577604997335006081601057339165802473516441292170137600} a^{11} - \frac{17636588931560810381758641450678387917217742948201391}{2310419989340024326404229356663209894065765168680550400} a^{10} + \frac{15146925284396237230001070161036947749096239067471283}{1155209994670012163202114678331604947032882584340275200} a^{9} - \frac{93608948750762766796641634528087244002167487544306443}{1155209994670012163202114678331604947032882584340275200} a^{8} - \frac{37981590041696583431739139347723395186925021318703053}{577604997335006081601057339165802473516441292170137600} a^{7} - \frac{134257476419417349077348789392376937369954636240862949}{577604997335006081601057339165802473516441292170137600} a^{6} - \frac{134960965175400286879866313732467910822238368848155441}{288802498667503040800528669582901236758220646085068800} a^{5} + \frac{1940010699154037652398230113932365160726013562000349}{7220062466687576020013216739572530918955516152126720} a^{4} - \frac{778367015752469859683708007223624343058233477875109}{3610031233343788010006608369786265459477758076063360} a^{3} - \frac{90159668208046882428771079685640953894711369180999}{451253904167973501250826046223283182434719759507920} a^{2} + \frac{9451102485491244542519987587509638642293259563553}{45125390416797350125082604622328318243471975950792} a + \frac{535373521487274827243083160467662853054280201047}{5640673802099668765635325577791039780433996993849}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 221942427739000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.229.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.10.0.1 | $x^{10} - x + 7$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 229 | Data not computed | ||||||
| 607 | Data not computed | ||||||
| 1773841 | Data not computed | ||||||