Normalized defining polynomial
\( x^{15} - 6 x^{14} - 45 x^{13} + 237 x^{12} + 927 x^{11} - 3972 x^{10} - 15815 x^{9} - 1359 x^{8} + 32784 x^{7} + 13036 x^{6} - 44982 x^{5} - 205428 x^{4} - 402517 x^{3} - 219972 x^{2} + 103137 x + 90953 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2078532132292195957110397206528=2^{24}\cdot 3^{20}\cdot 19^{2}\cdot 73^{3}\cdot 503^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $105.00$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 19, 73, 503$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{11} + \frac{1}{11} a^{10} + \frac{1}{11} a^{8} - \frac{2}{11} a^{7} - \frac{5}{11} a^{6} + \frac{3}{11} a^{5} - \frac{2}{11} a^{4} + \frac{2}{11} a^{3} + \frac{5}{11} a^{2} - \frac{4}{11} a + \frac{3}{11}$, $\frac{1}{4166324251388991064948609718443166143} a^{14} + \frac{52568514011599058888980009261398931}{4166324251388991064948609718443166143} a^{13} + \frac{2081067674519491354820752501625574867}{4166324251388991064948609718443166143} a^{12} + \frac{161820780484675004944378256482228896}{4166324251388991064948609718443166143} a^{11} + \frac{662656319945790050519798561140795559}{4166324251388991064948609718443166143} a^{10} - \frac{604665708560139418663584491572900507}{4166324251388991064948609718443166143} a^{9} - \frac{1169655561395226632684704893018648286}{4166324251388991064948609718443166143} a^{8} - \frac{577553212061915230998416762893239636}{4166324251388991064948609718443166143} a^{7} + \frac{949422922998497095682226396424424568}{4166324251388991064948609718443166143} a^{6} + \frac{167929076587199188248961366757380395}{378756750126271914995328156222106013} a^{5} - \frac{1437994461389627885599434064725158318}{4166324251388991064948609718443166143} a^{4} - \frac{697355821828296498969359390641813789}{4166324251388991064948609718443166143} a^{3} - \frac{1864662491909373799217463307088770350}{4166324251388991064948609718443166143} a^{2} + \frac{520865964717642579303596128300634600}{4166324251388991064948609718443166143} a + \frac{1734937658533183353617871578188015949}{4166324251388991064948609718443166143}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3797541389.82 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24000 |
| The 55 conjugacy class representatives for [F(5)^3]3=F(5)wr3 are not computed |
| Character table for [F(5)^3]3=F(5)wr3 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $15$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.303 | $x^{12} + 32 x^{11} + 6 x^{10} + 32 x^{9} - 2 x^{8} + 16 x^{7} + 24 x^{6} - 8 x^{5} + 16 x^{3} + 8 x^{2} + 16 x - 24$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3]^{6}$ | |
| 3 | Data not computed | ||||||
| $19$ | $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{19}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.2.2 | $x^{4} - 19 x^{2} + 722$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 19.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $73$ | $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{73}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 73.4.3.3 | $x^{4} + 365$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 73.5.0.1 | $x^{5} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 503 | Data not computed | ||||||