Normalized defining polynomial
\( x^{15} + 144 x^{13} - 2520 x^{12} - 1742 x^{11} - 60688 x^{10} + 458730 x^{9} + 1573056 x^{8} + 7145208 x^{7} - 71519792 x^{6} + 82469440 x^{5} + 135668160 x^{4} - 221720800 x^{3} - 39766400 x^{2} + 129472000 x - 36992000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1971910983137006508480742693889540096000000=2^{21}\cdot 5^{6}\cdot 13^{2}\cdot 17^{4}\cdot 37^{5}\cdot 247955177^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $660.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13, 17, 37, 247955177$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{9} + \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{16} a^{10} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{3}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{11} + \frac{1}{40} a^{9} - \frac{1}{8} a^{8} - \frac{11}{80} a^{7} + \frac{1}{5} a^{6} - \frac{3}{16} a^{5} - \frac{3}{20} a^{4} + \frac{3}{10} a^{3} - \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{12} + \frac{1}{80} a^{10} - \frac{1}{16} a^{9} - \frac{11}{160} a^{8} - \frac{3}{20} a^{7} - \frac{3}{32} a^{6} + \frac{17}{40} a^{5} + \frac{3}{20} a^{4} - \frac{9}{40} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{27200} a^{13} - \frac{13}{13600} a^{11} - \frac{41}{1360} a^{10} + \frac{489}{13600} a^{9} - \frac{361}{3400} a^{8} - \frac{673}{2720} a^{7} - \frac{823}{3400} a^{6} + \frac{877}{6800} a^{5} + \frac{1261}{3400} a^{4} + \frac{141}{340} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{1030493453561681701618694456213162263723639302400} a^{14} + \frac{3886904735734300908491179887570888961653389}{257623363390420425404673614053290565930909825600} a^{13} + \frac{33204640049128223389624102945970644010291669}{64405840847605106351168403513322641482727456400} a^{12} - \frac{180098579650399980790437879999907315535619467}{128811681695210212702336807026645282965454912800} a^{11} - \frac{6321969540317254922589776757101747380368298311}{515246726780840850809347228106581131861819651200} a^{10} + \frac{155158562591306524486596598982133875902164791}{25762336339042042540467361405329056593090982560} a^{9} - \frac{1474782546405693045499013785550460472107316827}{30308630987108285341726307535681243050695273600} a^{8} - \frac{8082969509949931053681129319624945549045579223}{128811681695210212702336807026645282965454912800} a^{7} - \frac{9998271873838307559235733683538466966489373177}{128811681695210212702336807026645282965454912800} a^{6} + \frac{24409752094484138083726245120051119687265838251}{64405840847605106351168403513322641482727456400} a^{5} - \frac{6363826698014377178144938081001833932095533883}{16101460211901276587792100878330660370681864100} a^{4} + \frac{1365373344692168544259087217288682042457788287}{3220292042380255317558420175666132074136372820} a^{3} + \frac{112977464682360184748713902202248241550938281}{378857887338853566771578844196015538133690920} a^{2} + \frac{4542263367811652553324698925914819953530946}{9471447183471339169289471104900388453342273} a - \frac{4174547052659923431682539814301833873420205}{9471447183471339169289471104900388453342273}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48284056165600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 10368000 |
| The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed |
| Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ | R | ${\href{/LocalNumberField/7.9.0.1}{9} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.11.11 | $x^{6} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $11$ | $S_4\times C_2$ | $[8/3, 8/3, 3]_{3}^{2}$ | |
| 2.6.8.2 | $x^{6} + 2 x^{3} + 2 x^{2} + 6$ | $6$ | $1$ | $8$ | $S_4\times C_2$ | $[4/3, 4/3, 2]_{3}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.5.4.1 | $x^{5} - 17$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 37 | Data not computed | ||||||
| 247955177 | Data not computed | ||||||