Normalized defining polynomial
\( x^{15} - 162 x^{13} - 432 x^{12} + 10504 x^{11} + 24992 x^{10} - 1130400 x^{9} - 8695296 x^{8} + 19025280 x^{7} + 499850752 x^{6} + 2453729280 x^{5} + 5506375680 x^{4} + 6367436800 x^{3} + 3859251200 x^{2} + 1146880000 x + 131072000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18866366579450294354517385665314816000000=2^{27}\cdot 5^{6}\cdot 37^{2}\cdot 163^{5}\cdot 7557157^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $484.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 37, 163, 7557157$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{5} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{6} - \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{7} - \frac{1}{32} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{256} a^{8} + \frac{1}{128} a^{6} - \frac{1}{16} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{512} a^{9} + \frac{1}{256} a^{7} - \frac{1}{32} a^{5} - \frac{1}{16} a^{3}$, $\frac{1}{2048} a^{10} - \frac{1}{1024} a^{9} + \frac{1}{1024} a^{8} - \frac{1}{512} a^{7} - \frac{1}{128} a^{6} + \frac{1}{64} a^{5} + \frac{3}{64} a^{4} + \frac{1}{32} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{40960} a^{11} - \frac{1}{4096} a^{10} - \frac{11}{20480} a^{9} - \frac{13}{10240} a^{8} + \frac{1}{640} a^{7} - \frac{9}{1280} a^{6} - \frac{5}{256} a^{5} + \frac{1}{640} a^{4} + \frac{1}{80} a^{2} + \frac{1}{4} a$, $\frac{1}{81920} a^{12} - \frac{1}{40960} a^{10} - \frac{1}{2560} a^{9} + \frac{13}{10240} a^{8} - \frac{7}{1280} a^{7} + \frac{1}{512} a^{6} + \frac{1}{80} a^{5} - \frac{5}{128} a^{4} + \frac{3}{80} a^{3} - \frac{1}{16} a^{2}$, $\frac{1}{1638400} a^{13} - \frac{1}{819200} a^{11} - \frac{1}{51200} a^{10} - \frac{27}{204800} a^{9} - \frac{27}{25600} a^{8} - \frac{51}{10240} a^{7} - \frac{23}{3200} a^{6} + \frac{27}{2560} a^{5} + \frac{83}{1600} a^{4} + \frac{29}{320} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{3300254284634640503708427878400} a^{14} + \frac{338083296622638805510273}{1650127142317320251854213939200} a^{13} - \frac{1450762753487646925964761}{1650127142317320251854213939200} a^{12} + \frac{4689095195825254973416439}{825063571158660125927106969600} a^{11} + \frac{2539627496159944302960769}{412531785579330062963553484800} a^{10} + \frac{869759715498961291936247}{1127136026173032958916812800} a^{9} - \frac{33733806337829967090119353}{34377648798277505246962790400} a^{8} + \frac{51810365445256958106853607}{17188824399138752623481395200} a^{7} + \frac{108482671797565941654786041}{8594412199569376311740697600} a^{6} - \frac{261470301303498674403152693}{12891618299354064467611046400} a^{5} - \frac{53114243807886572320192057}{3222904574838516116902761600} a^{4} - \frac{16416812178105364296591389}{322290457483851611690276160} a^{3} - \frac{220958268958290491792993}{1678596132728393810886855} a^{2} + \frac{125653196109851562622967}{2014315359274072573064226} a - \frac{299990162977805952288344}{1007157679637036286532113}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 51017956695100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5184000 |
| The 79 conjugacy class representatives for [1/2.S(5)^3]S(3) are not computed |
| Character table for [1/2.S(5)^3]S(3) is not computed |
Intermediate fields
| 3.3.1304.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | $15$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.11.11 | $x^{4} + 10$ | $4$ | $1$ | $11$ | $D_{4}$ | $[2, 3, 4]$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $37$ | $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{37}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 37.4.2.2 | $x^{4} - 37 x^{2} + 6845$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 37.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 37.5.0.1 | $x^{5} - x + 13$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.1.2 | $x^{2} + 652$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.4.2.1 | $x^{4} + 3423 x^{2} + 3214849$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7557157 | Data not computed | ||||||