Normalized defining polynomial
\( x^{15} - 6 x^{13} - 6 x^{12} + 27 x^{11} + 12 x^{10} - 88 x^{9} + 54 x^{8} - 72 x^{7} + 408 x^{6} - 297 x^{5} - 474 x^{4} + 616 x^{3} - 72 x^{2} - 144 x + 32 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1731826804433353307136=2^{10}\cdot 3^{15}\cdot 4903^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 4903$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{46} a^{11} + \frac{9}{23} a^{10} - \frac{11}{23} a^{9} + \frac{9}{23} a^{8} - \frac{15}{46} a^{7} + \frac{9}{23} a^{5} + \frac{2}{23} a^{4} + \frac{9}{23} a^{3} + \frac{11}{23} a^{2} + \frac{13}{46} a - \frac{11}{23}$, $\frac{1}{6348} a^{12} + \frac{4}{529} a^{11} + \frac{255}{1058} a^{10} + \frac{1289}{3174} a^{9} + \frac{773}{2116} a^{8} - \frac{72}{529} a^{7} + \frac{174}{529} a^{6} - \frac{377}{1058} a^{5} - \frac{5}{23} a^{4} - \frac{233}{529} a^{3} + \frac{485}{2116} a^{2} - \frac{11}{46} a + \frac{778}{1587}$, $\frac{1}{292008} a^{13} - \frac{7}{146004} a^{12} - \frac{241}{48668} a^{11} - \frac{27097}{146004} a^{10} - \frac{87689}{292008} a^{9} - \frac{8237}{48668} a^{8} + \frac{3906}{12167} a^{7} + \frac{19309}{48668} a^{6} + \frac{5753}{24334} a^{5} - \frac{4751}{12167} a^{4} - \frac{30603}{97336} a^{3} + \frac{5581}{24334} a^{2} + \frac{11611}{73002} a - \frac{16183}{36501}$, $\frac{1}{13432368} a^{14} + \frac{1}{839523} a^{13} + \frac{125}{6716184} a^{12} + \frac{1997}{6716184} a^{11} + \frac{63931}{13432368} a^{10} + \frac{255727}{3358092} a^{9} + \frac{122253}{559682} a^{8} + \frac{1108017}{2238728} a^{7} - \frac{45391}{559682} a^{6} - \frac{166557}{559682} a^{5} + \frac{1067885}{4477456} a^{4} - \frac{411911}{2238728} a^{3} + \frac{94283}{1679046} a^{2} - \frac{170527}{1679046} a + \frac{314821}{839523}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96504.3069418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 933120 |
| The 108 conjugacy class representatives for [S(3)^5]S(5)=S(3)wrS(5) are not computed |
| Character table for [S(3)^5]S(5)=S(3)wrS(5) is not computed |
Intermediate fields
| 5.3.4903.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $15$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| $3$ | 3.6.6.5 | $x^{6} + 6 x^{3} + 9 x^{2} + 9$ | $3$ | $2$ | $6$ | $S_3^2$ | $[3/2, 3/2]_{2}^{2}$ |
| 3.9.9.9 | $x^{9} + 18 x^{5} + 27 x^{2} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 4903 | Data not computed | ||||||