Normalized defining polynomial
\( x^{15} - 4 x^{14} - 30 x^{13} + 32 x^{12} + 421 x^{11} + 132 x^{10} - 3322 x^{9} - 112 x^{8} + 11245 x^{7} - 816 x^{6} - 22856 x^{5} + 7348 x^{4} + 20212 x^{3} - 4272 x^{2} - 8528 x - 1648 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156309566567541201405567041536=2^{26}\cdot 137^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{1976} a^{13} - \frac{105}{988} a^{12} + \frac{33}{247} a^{11} + \frac{54}{247} a^{10} - \frac{435}{1976} a^{9} + \frac{3}{76} a^{8} - \frac{101}{494} a^{7} - \frac{115}{247} a^{6} + \frac{293}{1976} a^{5} + \frac{449}{988} a^{4} - \frac{153}{988} a^{3} + \frac{18}{247} a^{2} - \frac{35}{247} a - \frac{24}{247}$, $\frac{1}{854451284267867952406000} a^{14} - \frac{13668295693554953273}{213612821066966988101500} a^{13} - \frac{4914249941484051487523}{106806410533483494050750} a^{12} - \frac{7163743407106244209611}{53403205266741747025375} a^{11} + \frac{3334468719732010418511}{44971120224624629074000} a^{10} - \frac{16790432907759563780963}{42722564213393397620300} a^{9} - \frac{88882282772784110353923}{213612821066966988101500} a^{8} + \frac{2430309328912814363674}{53403205266741747025375} a^{7} + \frac{346014916301792464144253}{854451284267867952406000} a^{6} - \frac{4895725808802944096101}{10680641053348349405075} a^{5} - \frac{109775609062577700453}{1183450532226963923000} a^{4} + \frac{73824960204388436528539}{213612821066966988101500} a^{3} + \frac{18110754327421061843374}{53403205266741747025375} a^{2} - \frac{1107766288053459958907}{5621390028078078634250} a - \frac{14104906367306746970031}{53403205266741747025375}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12284484047.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_8$ (as 15T72):
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.8.7 | $x^{4} + 4 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.8.16.20 | $x^{8} + 2 x^{4} + 8 x^{2} + 8 x + 4$ | $4$ | $2$ | $16$ | $V_4^2:S_3$ | $[4/3, 4/3, 8/3, 8/3]_{3}^{2}$ | |
| $137$ | 137.6.4.2 | $x^{6} - 137 x^{3} + 112614$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 137.9.6.1 | $x^{9} - 18769 x^{3} + 12856765$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |