Normalized defining polynomial
\( x^{15} - x^{14} - 37 x^{13} + 81 x^{12} + 394 x^{11} - 906 x^{10} - 1650 x^{9} + 3878 x^{8} + 1548 x^{7} - 3724 x^{6} + 28484 x^{5} + 42844 x^{4} - 18504 x^{3} - 59864 x^{2} - 36216 x - 7288 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156309566567541201405567041536=2^{26}\cdot 137^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{20642281406186352666640} a^{14} + \frac{190615496248685739383}{20642281406186352666640} a^{13} - \frac{83273540404475509397}{4128456281237270533328} a^{12} - \frac{281413463380118206219}{20642281406186352666640} a^{11} + \frac{591209531601079249547}{5160570351546588166660} a^{10} + \frac{166110502751627877159}{5160570351546588166660} a^{9} + \frac{641510565995572699131}{5160570351546588166660} a^{8} - \frac{129576052009406554249}{5160570351546588166660} a^{7} - \frac{147334171999833970566}{1290142587886647041665} a^{6} + \frac{1205966499467179794853}{5160570351546588166660} a^{5} - \frac{718941337072490358537}{5160570351546588166660} a^{4} - \frac{2545315643996386761567}{5160570351546588166660} a^{3} - \frac{1257009904826650748957}{2580285175773294083330} a^{2} + \frac{321279110134744640497}{1290142587886647041665} a + \frac{323797048716766634962}{1290142587886647041665}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12284484047.2 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_8$ (as 15T72):
| A non-solvable group of order 20160 |
| The 14 conjugacy class representatives for $A_8$ |
| Character table for $A_8$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 8 sibling: | data not computed |
| Degree 28 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.26.106 | $x^{12} + 4 x^{8} + 4 x^{6} + 4 x^{5} + 2 x^{4} + 4 x^{3} + 4 x^{2} + 2$ | $12$ | $1$ | $26$ | 12T66 | $[4/3, 4/3, 8/3, 8/3]_{3}^{2}$ | |
| $137$ | 137.6.4.2 | $x^{6} - 137 x^{3} + 112614$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 137.9.6.1 | $x^{9} - 18769 x^{3} + 12856765$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |