Normalized defining polynomial
\( x^{15} - 7 x^{14} - 640 x^{13} + 4156 x^{12} + 126567 x^{11} - 1031495 x^{10} - 7366320 x^{9} + 137318238 x^{8} - 1027018697 x^{7} - 13883866784 x^{6} + 44995084425 x^{5} + 688125232186 x^{4} + 3695380376144 x^{3} + 12917190317191 x^{2} + 17219135199695 x + 7167576473465 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(149021683637623372924986597528084838454055625=5^{4}\cdot 13^{10}\cdot 331^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $880.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{35} a^{11} + \frac{2}{35} a^{10} - \frac{9}{35} a^{9} - \frac{3}{35} a^{8} + \frac{3}{35} a^{7} - \frac{3}{7} a^{6} - \frac{11}{35} a^{5} - \frac{2}{35} a^{4} - \frac{9}{35} a^{3} - \frac{2}{35} a^{2} - \frac{3}{7} a - \frac{1}{7}$, $\frac{1}{35} a^{12} + \frac{1}{35} a^{10} - \frac{6}{35} a^{9} + \frac{9}{35} a^{8} + \frac{1}{5} a^{7} - \frac{2}{35} a^{6} + \frac{6}{35} a^{5} - \frac{1}{7} a^{4} - \frac{12}{35} a^{3} - \frac{4}{35} a^{2} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{245} a^{13} + \frac{1}{245} a^{12} - \frac{3}{245} a^{11} + \frac{8}{245} a^{10} - \frac{2}{49} a^{9} - \frac{6}{35} a^{8} + \frac{1}{7} a^{7} - \frac{4}{49} a^{6} - \frac{11}{245} a^{5} - \frac{79}{245} a^{4} + \frac{48}{245} a^{3} + \frac{57}{245} a^{2} + \frac{12}{49} a - \frac{22}{49}$, $\frac{1}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{14} + \frac{236169429304129999210886569914953141657942508728623949527222465103368338307697817902}{147286979622525581436950186660936313956415629807757995832427491888557514654716076242675} a^{13} + \frac{6015124517507623319978581327874627349107158675177903027483261085405438445743394211169}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{12} + \frac{2942939290853943706172609515363040223918974905176297363534311434398608158669554190742}{206201771471535814011730261325310839538981881730861194165398488643980520516602506739745} a^{11} - \frac{32908809570586354299412070317217434429797077923007846356407403848179439780652512856973}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{10} - \frac{509707010575987344918227046817925052098073715361224822042423536896695598846862270149278}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{9} - \frac{71223270098556555314769550288244480468799779985241579156773646740307085290735566804079}{147286979622525581436950186660936313956415629807757995832427491888557514654716076242675} a^{8} - \frac{3552604732167216116326013690154168362559424502775858063161234719344713756086221618386}{206201771471535814011730261325310839538981881730861194165398488643980520516602506739745} a^{7} - \frac{421537281543751347125911311799203860595734077123199972458924254517631938789014900538562}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{6} - \frac{51776871964013497674765404758836747985932619096987721271403614249421636116734111420141}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{5} - \frac{292426754316426131348349578706008580582333986710154846467573253295629683718594586412606}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{4} + \frac{57534927077774127163761287937214553032230135275514751710551687132780183929140902758647}{206201771471535814011730261325310839538981881730861194165398488643980520516602506739745} a^{3} - \frac{232801167460548515704869455570322344841371579307384246746717321013202278086908980725736}{1031008857357679070058651306626554197694909408654305970826992443219902602583012533698725} a^{2} + \frac{57847503251661755404580080014852286305487109299796788923481198833580002665681092127123}{206201771471535814011730261325310839538981881730861194165398488643980520516602506739745} a - \frac{31829683435658849628039800618862042650032535497799446547884251296053670493754125713233}{206201771471535814011730261325310839538981881730861194165398488643980520516602506739745}$
Class group and class number
$C_{5}$, which has order $5$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21070099870400000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 28 conjugacy class representatives for [1/2.D(5)^3]3 |
| Character table for [1/2.D(5)^3]3 is not computed |
Intermediate fields
| 3.3.169.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $15$ | $15$ | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{5}$ | R | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $15$ | $15$ | $15$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13 | Data not computed | ||||||
| 331 | Data not computed | ||||||