Normalized defining polynomial
\( x^{15} - 486 x^{13} - 3888 x^{12} + 46872 x^{11} + 866592 x^{10} + 4133160 x^{9} - 10539072 x^{8} - 228238176 x^{7} - 1326742656 x^{6} - 4316787840 x^{5} - 8710225920 x^{4} - 11105446400 x^{3} - 8715724800 x^{2} - 3849216000 x - 733184000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1447102581933483211395771120066876223488000000=2^{18}\cdot 3^{21}\cdot 5^{6}\cdot 179^{4}\cdot 3671^{2}\cdot 49409^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1024.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 179, 3671, 49409$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} - \frac{7}{1600} a^{7} - \frac{1}{100} a^{6} + \frac{3}{400} a^{5} + \frac{3}{25} a^{4} + \frac{57}{400} a^{3} - \frac{1}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{6400} a^{10} + \frac{1}{3200} a^{8} - \frac{1}{200} a^{7} - \frac{1}{160} a^{6} - \frac{1}{50} a^{5} + \frac{1}{32} a^{4} + \frac{1}{100} a^{3} + \frac{43}{200} a^{2} - \frac{2}{5}$, $\frac{1}{128000} a^{11} + \frac{7}{64000} a^{9} - \frac{3}{8000} a^{8} + \frac{7}{8000} a^{7} - \frac{9}{4000} a^{6} - \frac{7}{3200} a^{5} - \frac{183}{2000} a^{4} - \frac{369}{2000} a^{3} + \frac{213}{1000} a^{2} - \frac{47}{200} a + \frac{1}{50}$, $\frac{1}{1280000} a^{12} - \frac{33}{640000} a^{10} + \frac{7}{80000} a^{9} - \frac{3}{80000} a^{8} + \frac{201}{40000} a^{7} - \frac{11}{6400} a^{6} + \frac{237}{20000} a^{5} - \frac{1259}{20000} a^{4} + \frac{1843}{10000} a^{3} - \frac{139}{2000} a^{2} + \frac{141}{500} a - \frac{6}{25}$, $\frac{1}{5120000000} a^{13} - \frac{31}{128000000} a^{12} + \frac{5637}{2560000000} a^{11} - \frac{10689}{160000000} a^{10} + \frac{33279}{640000000} a^{9} + \frac{14351}{160000000} a^{8} - \frac{147747}{25600000} a^{7} - \frac{31873}{5000000} a^{6} - \frac{746303}{160000000} a^{5} - \frac{3024687}{40000000} a^{4} + \frac{95871}{8000000} a^{3} - \frac{20919}{1000000} a^{2} + \frac{57879}{400000} a - \frac{18023}{100000}$, $\frac{1}{655360000000} a^{14} - \frac{11}{163840000000} a^{13} + \frac{60117}{327680000000} a^{12} - \frac{257293}{81920000000} a^{11} + \frac{3363103}{81920000000} a^{10} + \frac{521693}{5120000000} a^{9} - \frac{38190491}{81920000000} a^{8} - \frac{80236761}{20480000000} a^{7} + \frac{180360241}{20480000000} a^{6} - \frac{27466821}{1280000000} a^{5} + \frac{11789703}{5120000000} a^{4} + \frac{38106391}{256000000} a^{3} - \frac{17470853}{256000000} a^{2} - \frac{1589301}{6400000} a - \frac{326877}{3200000}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134777032173000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1296000 |
| The 53 conjugacy class representatives for [A(5)^3:2]3 are not computed |
| Character table for [A(5)^3:2]3 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 sibling: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 179 | Data not computed | ||||||
| 3671 | Data not computed | ||||||
| 49409 | Data not computed | ||||||