Normalized defining polynomial
\( x^{15} - 5 x^{14} - 65 x^{13} + 117 x^{12} + 2102 x^{11} + 4902 x^{10} - 62198 x^{9} - 170502 x^{8} + 1255903 x^{7} + 2178233 x^{6} - 14942855 x^{5} - 11450085 x^{4} + 78014535 x^{3} + 39062877 x^{2} - 153874791 x - 120960561 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[7, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1196768921851523490591827382239232=2^{24}\cdot 3^{9}\cdot 107^{5}\cdot 137^{3}\cdot 317^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $160.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 107, 137, 317$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{26} a^{13} + \frac{9}{26} a^{12} + \frac{6}{13} a^{11} + \frac{3}{13} a^{9} - \frac{3}{13} a^{8} + \frac{3}{13} a^{7} - \frac{3}{13} a^{6} + \frac{11}{26} a^{5} + \frac{11}{26} a^{4} + \frac{5}{13} a^{2} + \frac{11}{26} a + \frac{11}{26}$, $\frac{1}{70286361623649982551726775702736126550645958646109244} a^{14} - \frac{69191242938847816783945716977569729897472683127902}{17571590405912495637931693925684031637661489661527311} a^{13} - \frac{15736372520528303206006650730144350567642268682636521}{70286361623649982551726775702736126550645958646109244} a^{12} - \frac{317866366581541518796586549664802968777770982044029}{763982191561412853823117127203653549463543028762057} a^{11} - \frac{11211820883842411933312673576414040869477991605852573}{35143180811824991275863387851368063275322979323054622} a^{10} + \frac{3825565613576801532859155314916484639818917145275994}{17571590405912495637931693925684031637661489661527311} a^{9} + \frac{2508675337516219021535824985594448687667320177869565}{35143180811824991275863387851368063275322979323054622} a^{8} + \frac{690393830142098061317572979157984580936793402877303}{17571590405912495637931693925684031637661489661527311} a^{7} + \frac{8909345587546283637956068482362808054856157240598931}{70286361623649982551726775702736126550645958646109244} a^{6} - \frac{5269199747846864008951678131604677452494276051231672}{17571590405912495637931693925684031637661489661527311} a^{5} + \frac{992225432904576302871816566789069426307847104803159}{3055928766245651415292468508814614197854172115048228} a^{4} + \frac{4611357828362562420720766862999742824504452558287471}{17571590405912495637931693925684031637661489661527311} a^{3} + \frac{7640837495861749221872566500331604101998101238639823}{70286361623649982551726775702736126550645958646109244} a^{2} - \frac{8295699377601026460360678594123610335637342614652564}{17571590405912495637931693925684031637661489661527311} a - \frac{27647863132929478367819946541405804650894483894076095}{70286361623649982551726775702736126550645958646109244}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 131964333996 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48000 |
| The 65 conjugacy class representatives for [F(5)^3]S(3)=F(5)wrS(3) are not computed |
| Character table for [F(5)^3]S(3)=F(5)wrS(3) is not computed |
Intermediate fields
| 3.3.321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.12.24.291 | $x^{12} + 12 x^{10} + 12 x^{9} - 14 x^{8} - 8 x^{6} - 8 x^{4} + 16 x^{3} - 8 x^{2} + 16 x - 8$ | $4$ | $3$ | $24$ | 12T55 | $[2, 2, 3, 3, 3]^{3}$ | |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 107 | Data not computed | ||||||
| $137$ | $\Q_{137}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 137.4.3.2 | $x^{4} - 1233$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 137.10.0.1 | $x^{10} - x + 53$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 317 | Data not computed | ||||||