Normalized defining polynomial
\( x^{15} - 387 x^{13} - 288 x^{12} + 45388 x^{11} + 179064 x^{10} - 2071125 x^{9} - 11113704 x^{8} - 23050860 x^{7} + 297750656 x^{6} + 836860640 x^{5} + 553472640 x^{4} - 1292267200 x^{3} - 1678700800 x^{2} + 1329664000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-947121317450814515044219243193351148649984000000=-\,2^{15}\cdot 5^{6}\cdot 7^{8}\cdot 23^{5}\cdot 53^{4}\cdot 359^{2}\cdot 7001803^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1579.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 23, 53, 359, 7001803$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} + \frac{1}{8} a^{7} + \frac{3}{8} a^{3}$, $\frac{1}{560} a^{10} - \frac{1}{40} a^{9} - \frac{51}{560} a^{8} - \frac{67}{280} a^{7} - \frac{7}{20} a^{6} - \frac{12}{35} a^{5} + \frac{29}{80} a^{4} + \frac{1}{40} a^{3} + \frac{3}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{1120} a^{11} + \frac{33}{1120} a^{9} - \frac{1}{140} a^{8} - \frac{1}{10} a^{7} + \frac{9}{70} a^{6} - \frac{7}{32} a^{5} + \frac{1}{20} a^{4} - \frac{9}{20} a^{2}$, $\frac{1}{2240} a^{12} + \frac{1}{2240} a^{10} - \frac{3}{56} a^{9} - \frac{1}{14} a^{8} + \frac{8}{35} a^{7} - \frac{19}{320} a^{6} + \frac{15}{56} a^{5} - \frac{2}{5} a^{4} + \frac{13}{40} a^{3} - \frac{9}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{44800} a^{13} + \frac{13}{44800} a^{11} + \frac{1}{1400} a^{10} - \frac{473}{11200} a^{9} + \frac{49}{800} a^{8} + \frac{559}{8960} a^{7} + \frac{1747}{5600} a^{6} + \frac{185}{448} a^{5} + \frac{17}{100} a^{4} + \frac{11}{40} a^{3} - \frac{1}{10} a^{2} + \frac{1}{4} a$, $\frac{1}{1896352534110788544684170747900881507459760671820800} a^{14} + \frac{575580546567372447003799712908829994459909453}{237044066763848568085521343487610188432470083977600} a^{13} - \frac{366157407724696208460763213869056448111110709907}{1896352534110788544684170747900881507459760671820800} a^{12} - \frac{89147704226170144279522608707195631316468170987}{237044066763848568085521343487610188432470083977600} a^{11} + \frac{412619823409134517463478548051932963503153953679}{474088133527697136171042686975220376864940167955200} a^{10} + \frac{11161774491856755374869407326832070894371418883947}{237044066763848568085521343487610188432470083977600} a^{9} + \frac{23755407383883647121366694338795084211448091279211}{1896352534110788544684170747900881507459760671820800} a^{8} + \frac{19021400470455704534890643250823629227458231769841}{118522033381924284042760671743805094216235041988800} a^{7} + \frac{29430112622766045336686400559837299040444778905641}{474088133527697136171042686975220376864940167955200} a^{6} - \frac{12151428038576740845191717391789091602558860244047}{59261016690962142021380335871902547108117520994400} a^{5} + \frac{2296697113527640805352490306236751061027112275561}{8465859527280306003054333695986078158302502999200} a^{4} + \frac{106434414189786101618817436805088847037778478281}{423292976364015300152716684799303907915125149960} a^{3} + \frac{85100126893491077374752545372252734235290563051}{846585952728030600305433369598607815830250299920} a^{2} - \frac{6850380652206595407339156855115767955331506603}{42329297636401530015271668479930390791512514996} a + \frac{2435664083432414238497353860683544386356112077}{10582324409100382503817917119982597697878128749}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4953255666940000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $15$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.2 | $x^{6} - x^{4} - 5$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2]^{6}$ | |
| 2.6.9.4 | $x^{6} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.5.0.1 | $x^{5} - x + 4$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 7.10.8.1 | $x^{10} - 7 x^{5} + 147$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 53 | Data not computed | ||||||
| 359 | Data not computed | ||||||
| 7001803 | Data not computed | ||||||