Properties

Label 15.5.695...651.1
Degree $15$
Signature $[5, 5]$
Discriminant $-6.957\times 10^{20}$
Root discriminant \(24.52\)
Ramified primes $11,67$
Class number $1$
Class group trivial
Galois group $C_7^3:C_6$ (as 15T44)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1)
 
gp: K = bnfinit(y^15 - y^14 - 6*y^13 + 29*y^12 - 66*y^11 - 32*y^10 + 34*y^9 + 100*y^8 + 122*y^7 + 56*y^6 + 12*y^5 + 11*y^4 - 9*y^3 + 7*y^2 - 6*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1)
 

\( x^{15} - x^{14} - 6 x^{13} + 29 x^{12} - 66 x^{11} - 32 x^{10} + 34 x^{9} + 100 x^{8} + 122 x^{7} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $15$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[5, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-695671349660522996651\) \(\medspace = -\,11^{13}\cdot 67^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(24.52\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{9/10}67^{2/3}\approx 142.76988787487005$
Ramified primes:   \(11\), \(67\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-11}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{22839775770703}a^{14}-\frac{6903584901936}{22839775770703}a^{13}+\frac{9631903651088}{22839775770703}a^{12}+\frac{247050083791}{993033729161}a^{11}-\frac{5220525109199}{22839775770703}a^{10}-\frac{163225509968}{22839775770703}a^{9}-\frac{10632550631013}{22839775770703}a^{8}+\frac{349164712002}{22839775770703}a^{7}-\frac{4487861335841}{22839775770703}a^{6}-\frac{447315490048}{993033729161}a^{5}-\frac{5098693346993}{22839775770703}a^{4}-\frac{1922047733774}{22839775770703}a^{3}-\frac{364824634455}{993033729161}a^{2}-\frac{8058628160423}{22839775770703}a-\frac{6683229636798}{22839775770703}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $9$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{6351689519994}{22839775770703}a^{14}-\frac{6209379615875}{22839775770703}a^{13}-\frac{35727781392263}{22839775770703}a^{12}+\frac{7860385976066}{993033729161}a^{11}-\frac{431619045224481}{22839775770703}a^{10}-\frac{136587174847217}{22839775770703}a^{9}+\frac{51197148590444}{22839775770703}a^{8}+\frac{511786645210981}{22839775770703}a^{7}+\frac{10\!\cdots\!05}{22839775770703}a^{6}+\frac{25861528112965}{993033729161}a^{5}+\frac{266477323939550}{22839775770703}a^{4}+\frac{185029972342046}{22839775770703}a^{3}-\frac{3601011516035}{993033729161}a^{2}+\frac{81295760012165}{22839775770703}a-\frac{29540336465516}{22839775770703}$, $\frac{2993219547924}{22839775770703}a^{14}-\frac{3383869978704}{22839775770703}a^{13}-\frac{18062132655528}{22839775770703}a^{12}+\frac{3983358975662}{993033729161}a^{11}-\frac{206515038915245}{22839775770703}a^{10}-\frac{98532673309578}{22839775770703}a^{9}+\frac{196696711330556}{22839775770703}a^{8}+\frac{218253645806816}{22839775770703}a^{7}+\frac{126577261693965}{22839775770703}a^{6}+\frac{6509635947663}{993033729161}a^{5}+\frac{262439361931046}{22839775770703}a^{4}+\frac{300746504300285}{22839775770703}a^{3}+\frac{5117274059900}{993033729161}a^{2}+\frac{14750801530831}{22839775770703}a-\frac{23530739596972}{22839775770703}$, $\frac{2568785348885}{22839775770703}a^{14}-\frac{4036750161952}{22839775770703}a^{13}-\frac{11731863981068}{22839775770703}a^{12}+\frac{3540590552889}{993033729161}a^{11}-\frac{226231433310827}{22839775770703}a^{10}+\frac{77896089698415}{22839775770703}a^{9}+\frac{639229512000}{22839775770703}a^{8}+\frac{94976135136499}{22839775770703}a^{7}+\frac{282032132151573}{22839775770703}a^{6}+\frac{7673977307639}{993033729161}a^{5}+\frac{202258109210977}{22839775770703}a^{4}+\frac{183663488734262}{22839775770703}a^{3}+\frac{141300385234}{993033729161}a^{2}+\frac{45404488498942}{22839775770703}a-\frac{53664161867748}{22839775770703}$, $\frac{2568785348885}{22839775770703}a^{14}-\frac{4036750161952}{22839775770703}a^{13}-\frac{11731863981068}{22839775770703}a^{12}+\frac{3540590552889}{993033729161}a^{11}-\frac{226231433310827}{22839775770703}a^{10}+\frac{77896089698415}{22839775770703}a^{9}+\frac{639229512000}{22839775770703}a^{8}+\frac{94976135136499}{22839775770703}a^{7}+\frac{282032132151573}{22839775770703}a^{6}+\frac{7673977307639}{993033729161}a^{5}+\frac{202258109210977}{22839775770703}a^{4}+\frac{183663488734262}{22839775770703}a^{3}+\frac{141300385234}{993033729161}a^{2}+\frac{45404488498942}{22839775770703}a-\frac{30824386097045}{22839775770703}$, $a$, $\frac{11206975181181}{22839775770703}a^{14}-\frac{5786308125006}{22839775770703}a^{13}-\frac{73155991392699}{22839775770703}a^{12}+\frac{12729562989359}{993033729161}a^{11}-\frac{579942517246614}{22839775770703}a^{10}-\frac{729659892098005}{22839775770703}a^{9}+\frac{239965555659315}{22839775770703}a^{8}+\frac{13\!\cdots\!89}{22839775770703}a^{7}+\frac{19\!\cdots\!20}{22839775770703}a^{6}+\frac{57617863272244}{993033729161}a^{5}+\frac{321165612688275}{22839775770703}a^{4}-\frac{19622883087041}{22839775770703}a^{3}-\frac{6757880952103}{993033729161}a^{2}+\frac{8774015893008}{22839775770703}a+\frac{11224285172613}{22839775770703}$, $\frac{781149740705}{22839775770703}a^{14}+\frac{10060706246000}{22839775770703}a^{13}-\frac{11056479290958}{22839775770703}a^{12}-\frac{2279534020888}{993033729161}a^{11}+\frac{241983546178969}{22839775770703}a^{10}-\frac{574620659395967}{22839775770703}a^{9}-\frac{783758410476420}{22839775770703}a^{8}+\frac{661705239259953}{22839775770703}a^{7}+\frac{15\!\cdots\!74}{22839775770703}a^{6}+\frac{59411765486074}{993033729161}a^{5}+\frac{528970242273809}{22839775770703}a^{4}+\frac{104965491631530}{22839775770703}a^{3}+\frac{4191414041293}{993033729161}a^{2}+\frac{55156252866122}{22839775770703}a-\frac{72714188609437}{22839775770703}$, $\frac{2899341071993}{22839775770703}a^{14}-\frac{6531220561566}{22839775770703}a^{13}-\frac{13476887243843}{22839775770703}a^{12}+\frac{4613927037126}{993033729161}a^{11}-\frac{298879794664084}{22839775770703}a^{10}+\frac{153173173650001}{22839775770703}a^{9}+\frac{208266721315769}{22839775770703}a^{8}+\frac{119656375750665}{22839775770703}a^{7}+\frac{19808988410459}{22839775770703}a^{6}-\frac{15892079438160}{993033729161}a^{5}+\frac{38729897630110}{22839775770703}a^{4}+\frac{9749715653887}{22839775770703}a^{3}+\frac{6121332292157}{993033729161}a^{2}+\frac{25358733422465}{22839775770703}a-\frac{199627993956}{22839775770703}$, $\frac{3419981067944}{22839775770703}a^{14}+\frac{8361977347027}{22839775770703}a^{13}-\frac{45024934287006}{22839775770703}a^{12}+\frac{1798681645301}{993033729161}a^{11}+\frac{200637842045621}{22839775770703}a^{10}-\frac{12\!\cdots\!90}{22839775770703}a^{9}+\frac{536676101433546}{22839775770703}a^{8}+\frac{14\!\cdots\!78}{22839775770703}a^{7}+\frac{426466839582153}{22839775770703}a^{6}+\frac{17408352966585}{993033729161}a^{5}-\frac{60013796711151}{22839775770703}a^{4}-\frac{216637649097048}{22839775770703}a^{3}+\frac{11741873306502}{993033729161}a^{2}-\frac{181119407498358}{22839775770703}a+\frac{21982052666971}{22839775770703}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 47044.8303705 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{5}\cdot 47044.8303705 \cdot 1}{2\cdot\sqrt{695671349660522996651}}\cr\approx \mathstrut & 0.279466124543 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^15 - x^14 - 6*x^13 + 29*x^12 - 66*x^11 - 32*x^10 + 34*x^9 + 100*x^8 + 122*x^7 + 56*x^6 + 12*x^5 + 11*x^4 - 9*x^3 + 7*x^2 - 6*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_7^3:C_6$ (as 15T44):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 2430
The 39 conjugacy class representatives for $C_7^3:C_6$
Character table for $C_7^3:C_6$

Intermediate fields

\(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed
Degree 45 siblings: data not computed
Minimal sibling: 15.5.154972454814106259.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.5.0.1}{5} }$ ${\href{/padicField/3.5.0.1}{5} }^{3}$ $15$ ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.5.0.1}{5} }$ R ${\href{/padicField/13.10.0.1}{10} }{,}\,{\href{/padicField/13.5.0.1}{5} }$ ${\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.5.0.1}{5} }$ ${\href{/padicField/19.10.0.1}{10} }{,}\,{\href{/padicField/19.5.0.1}{5} }$ ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{9}$ ${\href{/padicField/29.10.0.1}{10} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ $15$ $15$ ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }$ ${\href{/padicField/43.2.0.1}{2} }^{5}{,}\,{\href{/padicField/43.1.0.1}{1} }^{5}$ $15$ $15$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.5.4.4$x^{5} + 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.7$x^{10} + 11$$10$$1$$9$$C_{10}$$[\ ]_{10}$
\(67\) Copy content Toggle raw display $\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
$\Q_{67}$$x + 65$$1$$1$$0$Trivial$[\ ]$
67.3.0.1$x^{3} + 6 x + 65$$1$$3$$0$$C_3$$[\ ]^{3}$
67.3.0.1$x^{3} + 6 x + 65$$1$$3$$0$$C_3$$[\ ]^{3}$
67.3.2.2$x^{3} + 268$$3$$1$$2$$C_3$$[\ ]_{3}$
67.3.2.3$x^{3} + 134$$3$$1$$2$$C_3$$[\ ]_{3}$