Properties

Label 15.5.63587282469...0000.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{18}\cdot 5^{6}\cdot 23^{5}\cdot 59^{4}\cdot 149\cdot 281^{4}\cdot 9133^{2}\cdot 50683^{2}$
Root discriminant $3313.02$
Ramified primes $2, 5, 23, 59, 149, 281, 9133, 50683$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T102

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-67907584000, -356514816000, -807251404800, -1028587686400, -806742097920, -400169331840, -124100912256, -22831399776, -2150494272, -36042840, 10189792, 616072, -11088, -1386, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 1386*x^13 - 11088*x^12 + 616072*x^11 + 10189792*x^10 - 36042840*x^9 - 2150494272*x^8 - 22831399776*x^7 - 124100912256*x^6 - 400169331840*x^5 - 806742097920*x^4 - 1028587686400*x^3 - 807251404800*x^2 - 356514816000*x - 67907584000)
 
gp: K = bnfinit(x^15 - 1386*x^13 - 11088*x^12 + 616072*x^11 + 10189792*x^10 - 36042840*x^9 - 2150494272*x^8 - 22831399776*x^7 - 124100912256*x^6 - 400169331840*x^5 - 806742097920*x^4 - 1028587686400*x^3 - 807251404800*x^2 - 356514816000*x - 67907584000, 1)
 

Normalized defining polynomial

\( x^{15} - 1386 x^{13} - 11088 x^{12} + 616072 x^{11} + 10189792 x^{10} - 36042840 x^{9} - 2150494272 x^{8} - 22831399776 x^{7} - 124100912256 x^{6} - 400169331840 x^{5} - 806742097920 x^{4} - 1028587686400 x^{3} - 807251404800 x^{2} - 356514816000 x - 67907584000 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-63587282469726653922176018224241933346768105472000000=-\,2^{18}\cdot 5^{6}\cdot 23^{5}\cdot 59^{4}\cdot 149\cdot 281^{4}\cdot 9133^{2}\cdot 50683^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $3313.02$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23, 59, 149, 281, 9133, 50683$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{20} a^{5} - \frac{1}{10} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{40} a^{6} - \frac{1}{20} a^{4} + \frac{1}{10} a^{3}$, $\frac{1}{80} a^{7} - \frac{1}{40} a^{5} + \frac{1}{20} a^{4} - \frac{1}{2} a$, $\frac{1}{800} a^{8} + \frac{3}{400} a^{6} + \frac{1}{100} a^{5} + \frac{2}{25} a^{4} - \frac{1}{50} a^{3} + \frac{7}{100} a^{2} - \frac{1}{5}$, $\frac{1}{3200} a^{9} + \frac{3}{1600} a^{7} - \frac{1}{100} a^{6} + \frac{3}{400} a^{5} + \frac{1}{50} a^{4} + \frac{97}{400} a^{3} + \frac{1}{5} a^{2} + \frac{9}{20} a$, $\frac{1}{6400} a^{10} - \frac{1}{3200} a^{8} - \frac{1}{200} a^{7} - \frac{3}{800} a^{6} + \frac{33}{800} a^{4} - \frac{13}{100} a^{3} + \frac{31}{200} a^{2} + \frac{1}{5}$, $\frac{1}{128000} a^{11} - \frac{3}{64000} a^{9} - \frac{3}{8000} a^{8} - \frac{13}{8000} a^{7} + \frac{11}{4000} a^{6} + \frac{41}{3200} a^{5} + \frac{97}{2000} a^{4} - \frac{299}{2000} a^{3} - \frac{137}{1000} a^{2} - \frac{67}{200} a + \frac{1}{50}$, $\frac{1}{1280000} a^{12} + \frac{17}{640000} a^{10} + \frac{7}{80000} a^{9} + \frac{11}{40000} a^{8} - \frac{99}{40000} a^{7} - \frac{67}{6400} a^{6} + \frac{37}{20000} a^{5} - \frac{1067}{10000} a^{4} + \frac{1393}{10000} a^{3} + \frac{291}{2000} a^{2} - \frac{209}{500} a + \frac{9}{25}$, $\frac{1}{5120000000} a^{13} - \frac{31}{128000000} a^{12} + \frac{5187}{2560000000} a^{11} - \frac{1039}{160000000} a^{10} + \frac{97429}{640000000} a^{9} - \frac{86799}{160000000} a^{8} - \frac{129907}{25600000} a^{7} - \frac{51173}{5000000} a^{6} + \frac{3168897}{160000000} a^{5} - \frac{2263887}{40000000} a^{4} + \frac{399471}{8000000} a^{3} - \frac{246319}{1000000} a^{2} - \frac{25721}{400000} a + \frac{35177}{100000}$, $\frac{1}{655360000000} a^{14} - \frac{11}{163840000000} a^{13} + \frac{59667}{327680000000} a^{12} - \frac{253243}{81920000000} a^{11} + \frac{2692853}{81920000000} a^{10} + \frac{102059}{2560000000} a^{9} + \frac{17953909}{81920000000} a^{8} + \frac{109899639}{20480000000} a^{7} + \frac{77225841}{20480000000} a^{6} + \frac{10497079}{1280000000} a^{5} - \frac{191075497}{5120000000} a^{4} - \frac{5738009}{256000000} a^{3} - \frac{33905653}{256000000} a^{2} + \frac{1259099}{6400000} a - \frac{1200077}{3200000}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 977308953441000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T102:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 10368000
The 140 conjugacy class representatives for [S(5)^3]S(3)=S(5)wrS(3) are not computed
Character table for [S(5)^3]S(3)=S(5)wrS(3) is not computed

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 18 sibling: data not computed
Degree 30 siblings: data not computed
Degree 36 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.9.0.1}{9} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }$ R ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ R $15$ $15$ ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ R

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.6.9.6$x^{6} + 4 x^{2} + 8$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
2.6.9.8$x^{6} + 4 x^{2} - 24$$2$$3$$9$$A_4\times C_2$$[2, 2, 3]^{3}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.2$x^{4} - 5 x^{2} + 50$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.1$x^{4} + 299 x^{2} + 25921$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
59Data not computed
149Data not computed
281Data not computed
9133Data not computed
50683Data not computed