Normalized defining polynomial
\( x^{15} - 792 x^{13} - 1152 x^{12} + 237803 x^{11} - 541864 x^{10} - 23582115 x^{9} + 191481624 x^{8} - 405543860 x^{7} - 4433943936 x^{6} + 12454039840 x^{5} - 8249235840 x^{4} - 19260603200 x^{3} + 25020204800 x^{2} - 19817984000 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-526578703368934513642333503864526678250539093504000000=-\,2^{15}\cdot 5^{6}\cdot 23^{5}\cdot 59^{2}\cdot 157^{2}\cdot 38707^{4}\cdot 910849^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3814.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23, 59, 157, 38707, 910849$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{9} + \frac{3}{8} a^{5} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{5}{16} a^{6} - \frac{1}{2} a^{5} + \frac{5}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{160} a^{11} + \frac{1}{20} a^{9} + \frac{1}{20} a^{8} - \frac{37}{160} a^{7} + \frac{7}{20} a^{6} - \frac{7}{32} a^{5} - \frac{1}{10} a^{4} + \frac{3}{8} a^{3} - \frac{7}{20} a^{2} - \frac{1}{2} a$, $\frac{1}{320} a^{12} + \frac{1}{40} a^{10} + \frac{1}{40} a^{9} - \frac{37}{320} a^{8} + \frac{7}{40} a^{7} + \frac{25}{64} a^{6} - \frac{1}{20} a^{5} + \frac{3}{16} a^{4} - \frac{7}{40} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{6400} a^{13} + \frac{1}{800} a^{11} + \frac{3}{400} a^{10} + \frac{203}{6400} a^{9} + \frac{67}{800} a^{8} + \frac{217}{1280} a^{7} + \frac{53}{800} a^{6} - \frac{153}{320} a^{5} + \frac{179}{400} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{4} a$, $\frac{1}{14649336224913012978759200960478089343171460609389444565337676800} a^{14} - \frac{154012777219111395074455224172653912947968400079618370877393}{3662334056228253244689800240119522335792865152347361141334419200} a^{13} - \frac{2768999303376315933427142259799395728652326142954376421337489}{1831167028114126622344900120059761167896432576173680570667209600} a^{12} + \frac{1501348339616729462912533680424498133081134162438660681027}{57223969628566456948278128751867536496763518005427517833350300} a^{11} + \frac{243003446571894493879221296249089853937265990861063181238078187}{14649336224913012978759200960478089343171460609389444565337676800} a^{10} + \frac{20641601274314422679421808680601891967455729100809334982423839}{732466811245650648937960048023904467158573030469472228266883840} a^{9} - \frac{883830442356592760094910063460018983454826901577179627272027347}{14649336224913012978759200960478089343171460609389444565337676800} a^{8} - \frac{33551089998207848500794418556425572766745111984975039093208821}{192754424012013328667884223164185386094361323807755849543916800} a^{7} - \frac{1115919807733971571555591504669944964721004529783064659526001937}{3662334056228253244689800240119522335792865152347361141334419200} a^{6} + \frac{13534176412482629044841113171573836137281379556310978238301519}{915583514057063311172450060029880583948216288086840285333604800} a^{5} + \frac{58486418574077651273907967133811396949458984661524088065310131}{457791757028531655586225030014940291974108144043420142666802400} a^{4} + \frac{88650427328401985001801657804792510610403364641245823608389}{2288958785142658277931125150074701459870540720217100713334012} a^{3} - \frac{11673250051692688737371970197053712748637352377120844618074953}{45779175702853165558622503001494029197410814404342014266680240} a^{2} + \frac{12368557120084992379799369485263548051541801790060250939756}{572239696285664569482781287518675364967635180054275178333503} a + \frac{133586024884113213429156738951023720180128456443914301928448}{572239696285664569482781287518675364967635180054275178333503}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4391960199450000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 2592000 |
| The 70 conjugacy class representatives for [A(5)^3:2]S(3) are not computed |
| Character table for [A(5)^3:2]S(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
| Degree 45 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $15$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.4 | $x^{6} + x^{2} + 1$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.9.6 | $x^{6} + 4 x^{2} + 8$ | $2$ | $3$ | $9$ | $A_4\times C_2$ | $[2, 2, 3]^{3}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 59 | Data not computed | ||||||
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.4.2.2 | $x^{4} - 157 x^{2} + 147894$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 157.6.0.1 | $x^{6} - x + 61$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 38707 | Data not computed | ||||||
| 910849 | Data not computed | ||||||