Properties

Label 15.5.50283929687...0000.2
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{12}\cdot 5^{19}\cdot 23^{5}$
Root discriminant $38.03$
Ramified primes $2, 5, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T49

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6680, 6700, -7000, -6075, 250, 2544, 2760, 25, 320, -350, -28, -55, 0, 5, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 + 5*x^13 - 55*x^11 - 28*x^10 - 350*x^9 + 320*x^8 + 25*x^7 + 2760*x^6 + 2544*x^5 + 250*x^4 - 6075*x^3 - 7000*x^2 + 6700*x + 6680)
 
gp: K = bnfinit(x^15 + 5*x^13 - 55*x^11 - 28*x^10 - 350*x^9 + 320*x^8 + 25*x^7 + 2760*x^6 + 2544*x^5 + 250*x^4 - 6075*x^3 - 7000*x^2 + 6700*x + 6680, 1)
 

Normalized defining polynomial

\( x^{15} + 5 x^{13} - 55 x^{11} - 28 x^{10} - 350 x^{9} + 320 x^{8} + 25 x^{7} + 2760 x^{6} + 2544 x^{5} + 250 x^{4} - 6075 x^{3} - 7000 x^{2} + 6700 x + 6680 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-502839296875000000000000=-\,2^{12}\cdot 5^{19}\cdot 23^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{6} + \frac{1}{5} a^{5}$, $\frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{5} a^{10} - \frac{1}{10} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{10} a^{5} - \frac{1}{2} a$, $\frac{1}{4008831481153247241721420} a^{14} + \frac{22040985562981226408657}{2004415740576623620860710} a^{13} - \frac{58282422642303212272563}{801766296230649448344284} a^{12} - \frac{16864293135233980786573}{2004415740576623620860710} a^{11} + \frac{1261363410789184666899289}{4008831481153247241721420} a^{10} + \frac{808706641696767901293567}{2004415740576623620860710} a^{9} - \frac{647119976683741177576931}{2004415740576623620860710} a^{8} - \frac{69807218730976689414203}{1002207870288311810430355} a^{7} - \frac{11967919577710946719527}{801766296230649448344284} a^{6} + \frac{233815969694131413023931}{2004415740576623620860710} a^{5} - \frac{44783057319725418296956}{200441574057662362086071} a^{4} - \frac{106611698326147385994005}{400883148115324724172142} a^{3} + \frac{27353647243765629328705}{801766296230649448344284} a^{2} - \frac{131349792322182923805071}{400883148115324724172142} a + \frac{4688382352826245778966}{200441574057662362086071}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1571778.37102 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T49:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 3000
The 29 conjugacy class representatives for [5^3:4]S(3)
Character table for [5^3:4]S(3) is not computed

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$5$5.5.9.3$x^{5} + 80$$5$$1$$9$$F_5$$[9/4]_{4}$
5.10.10.12$x^{10} + 20 x^{6} + 10 x^{5} + 25 x^{2} + 100 x + 25$$5$$2$$10$$(C_5^2 : C_4) : C_2$$[5/4, 5/4]_{4}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$