Properties

Label 15.5.50283929687...0000.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{12}\cdot 5^{19}\cdot 23^{5}$
Root discriminant $38.03$
Ramified primes $2, 5, 23$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 15T49

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-200, 1500, -3750, 2425, 3500, -4339, -1180, 2725, 130, -950, -4, 185, 0, -20, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 20*x^13 + 185*x^11 - 4*x^10 - 950*x^9 + 130*x^8 + 2725*x^7 - 1180*x^6 - 4339*x^5 + 3500*x^4 + 2425*x^3 - 3750*x^2 + 1500*x - 200)
 
gp: K = bnfinit(x^15 - 20*x^13 + 185*x^11 - 4*x^10 - 950*x^9 + 130*x^8 + 2725*x^7 - 1180*x^6 - 4339*x^5 + 3500*x^4 + 2425*x^3 - 3750*x^2 + 1500*x - 200, 1)
 

Normalized defining polynomial

\( x^{15} - 20 x^{13} + 185 x^{11} - 4 x^{10} - 950 x^{9} + 130 x^{8} + 2725 x^{7} - 1180 x^{6} - 4339 x^{5} + 3500 x^{4} + 2425 x^{3} - 3750 x^{2} + 1500 x - 200 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-502839296875000000000000=-\,2^{12}\cdot 5^{19}\cdot 23^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $38.03$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{40} a^{13} - \frac{1}{2} a^{12} - \frac{3}{8} a^{9} + \frac{2}{5} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{8} a^{5} + \frac{1}{40} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{499139356055360} a^{14} + \frac{405525942557}{49913935605536} a^{13} + \frac{3019126711499}{6239241950692} a^{12} - \frac{794658234249}{3119620975346} a^{11} - \frac{7785245889947}{99827871211072} a^{10} + \frac{86206886547303}{249569678027680} a^{9} + \frac{6843624638903}{49913935605536} a^{8} - \frac{3178181174917}{49913935605536} a^{7} + \frac{22194210520973}{99827871211072} a^{6} + \frac{22048844107463}{49913935605536} a^{5} - \frac{108987803388519}{499139356055360} a^{4} - \frac{4966888380365}{49913935605536} a^{3} + \frac{43681753250225}{99827871211072} a^{2} + \frac{9738074362629}{24956967802768} a + \frac{1186996228117}{24956967802768}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1701928.98315 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

15T49:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 3000
The 29 conjugacy class representatives for [5^3:4]S(3)
Character table for [5^3:4]S(3) is not computed

Intermediate fields

3.1.23.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 15 siblings: data not computed
Degree 30 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ R ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ $15$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$5$5.5.9.4$x^{5} + 30$$5$$1$$9$$F_5$$[9/4]_{4}$
5.10.10.7$x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$$5$$2$$10$$F_{5}\times C_2$$[5/4]_{4}^{2}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.8.4.1$x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$