Normalized defining polynomial
\( x^{15} - 330 x^{13} - 4620 x^{12} + 12650 x^{11} + 1106633 x^{10} + 4277350 x^{9} - 70074125 x^{8} - 1077527385 x^{7} + 10086284725 x^{6} + 100194176808 x^{5} + 168219899100 x^{4} - 16147355822675 x^{3} - 69620528681495 x^{2} + 79865978259705 x + 368982332191957 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-464317130069216763190044343471527099609375=-\,3^{6}\cdot 5^{24}\cdot 11^{12}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $599.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{11} a^{7}$, $\frac{1}{11} a^{8}$, $\frac{1}{11} a^{9}$, $\frac{1}{121} a^{10}$, $\frac{1}{121} a^{11}$, $\frac{1}{121} a^{12}$, $\frac{1}{25531} a^{13} + \frac{93}{25531} a^{12} + \frac{72}{25531} a^{11} - \frac{20}{25531} a^{10} - \frac{96}{2321} a^{9} + \frac{57}{2321} a^{8} + \frac{43}{2321} a^{7} - \frac{5}{211} a^{6} - \frac{5}{211} a^{5} - \frac{99}{211} a^{4} + \frac{72}{211} a^{3} - \frac{1}{211} a^{2} + \frac{39}{211} a + \frac{57}{211}$, $\frac{1}{57915918383823518593184749845664328982772801049641618859127380876269973809867870651} a^{14} + \frac{108395328648284827071580724791388855233018386896243094133253879086022281879792}{57915918383823518593184749845664328982772801049641618859127380876269973809867870651} a^{13} - \frac{234538328882045303987896640788967389248652139176427308141891609827211675352950888}{57915918383823518593184749845664328982772801049641618859127380876269973809867870651} a^{12} - \frac{210654819040684566197974287463483204887246002619473541089783901886121977272551703}{57915918383823518593184749845664328982772801049641618859127380876269973809867870651} a^{11} - \frac{101436198644773495074785331777252224864114029017129863377271373489823683616801137}{57915918383823518593184749845664328982772801049641618859127380876269973809867870651} a^{10} + \frac{98170677217240364425248328654747328098177947613842934928745637759974052429258790}{5265083489438501690289522713242211725706618277240147169011580079660906709987988241} a^{9} + \frac{218013321083278768953842975532594940023727989184842576971905036188012818820536305}{5265083489438501690289522713242211725706618277240147169011580079660906709987988241} a^{8} - \frac{2717361317131789329480150011513335599226206767241870798647188723220657475166101}{752154784205500241469931816177458817958088325320021024144511439951558101426855463} a^{7} - \frac{41350878411898631181369678360158469548607722519396623275963280913789468616565390}{5265083489438501690289522713242211725706618277240147169011580079660906709987988241} a^{6} - \frac{113067697503582250737937841356659071599003803843563729037121749677790538477659115}{5265083489438501690289522713242211725706618277240147169011580079660906709987988241} a^{5} + \frac{17658382060507475633654075270524916211702370578513213264568161696781314607562716}{68377707655045476497266528743405347087098938665456456740410130904687100129714133} a^{4} - \frac{98028845495506527048992134603646126052424062870806889136541872760727402132862351}{478643953585318335480865701203837429609692570658195197182870916332809700907998931} a^{3} - \frac{209075473135280264774754939235120199510708114999441832523953081011023132859843589}{478643953585318335480865701203837429609692570658195197182870916332809700907998931} a^{2} - \frac{12622216601243081552184888327853274038492087999904664847580517394091189813028147}{478643953585318335480865701203837429609692570658195197182870916332809700907998931} a + \frac{13513143686273809628430248518059435924120274576274480594176671584719561631531393}{478643953585318335480865701203837429609692570658195197182870916332809700907998931}$
Class group and class number
$C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15044332102100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 40 conjugacy class representatives for [5^3:2]S(3) |
| Character table for [5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.10.16.10 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 120 x^{5} + 5 x^{4} - 45 x^{3} - 20 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ | |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.3 | $x^{10} - 11 x^{5} + 847$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |