Normalized defining polynomial
\( x^{15} - 1870 x^{12} - 32010 x^{11} + 777876 x^{10} - 6851625 x^{9} + 30190710 x^{8} - 74603760 x^{7} + 2486105930 x^{6} - 13069638582 x^{5} - 50184822600 x^{4} - 124388611655 x^{3} + 1660824701580 x^{2} + 7902686294580 x + 5476184846968 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-464317130069216763190044343471527099609375=-\,3^{6}\cdot 5^{24}\cdot 11^{12}\cdot 23^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $599.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{11} a^{6}$, $\frac{1}{22} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{66} a^{8} - \frac{1}{66} a^{7} + \frac{1}{33} a^{6} + \frac{1}{66} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{66} a^{9} + \frac{1}{66} a^{7} - \frac{1}{22} a^{6} - \frac{1}{33} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{726} a^{10} - \frac{1}{66} a^{7} - \frac{1}{33} a^{6} + \frac{1}{33} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{726} a^{11} - \frac{1}{33} a^{6} - \frac{1}{33} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{726} a^{12} + \frac{1}{66} a^{7} - \frac{1}{33} a^{6} - \frac{1}{33} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a$, $\frac{1}{50094} a^{13} - \frac{5}{50094} a^{12} - \frac{1}{1518} a^{11} + \frac{17}{25047} a^{10} - \frac{2}{2277} a^{9} - \frac{4}{759} a^{8} + \frac{32}{2277} a^{7} + \frac{86}{2277} a^{6} + \frac{6}{253} a^{5} - \frac{15}{46} a^{4} - \frac{53}{138} a^{3} + \frac{17}{138} a^{2} + \frac{68}{207} a - \frac{52}{207}$, $\frac{1}{574915675750128710278022897305448884047788219911678812108496443609012} a^{14} + \frac{546464433649414579740235837063868059110596452107622768645692851}{143728918937532177569505724326362221011947054977919703027124110902253} a^{13} - \frac{626866717666865109425484358137682737232244708217226141737097570}{13066265357957470688136884029669292819267914088901791184284010082023} a^{12} - \frac{151788519967669599389198404607608854208747412765953792832717927047}{287457837875064355139011448652724442023894109955839406054248221804506} a^{11} - \frac{51415155447219734155492795758688977564088290127059008445485528105}{287457837875064355139011448652724442023894109955839406054248221804506} a^{10} - \frac{6157699225445112301202770556522188475329687379102484057000966565}{13066265357957470688136884029669292819267914088901791184284010082023} a^{9} - \frac{3966478753559051743796409726634004826015123498712498093106757629}{7466437347404268964649648016953881611010236622229594962448005761156} a^{8} - \frac{251542841646225229648703866060867487769373775933969882930785353653}{26132530715914941376273768059338585638535828177803582368568020164046} a^{7} - \frac{338931845121499631532629114524508957358739919089574271643081866632}{13066265357957470688136884029669292819267914088901791184284010082023} a^{6} + \frac{42055261910054952874350868054079790241932549836681333256538515367}{8710843571971647125424589353112861879511942725934527456189340054682} a^{5} - \frac{43551981661212564390993571065310769998806623023679634806603766399}{263964956726413549255290586457965511500361900785894771399676971354} a^{4} + \frac{10055163553112008483595179736142308404309287861207310314270964232}{131982478363206774627645293228982755750180950392947385699838485677} a^{3} + \frac{2187290235653635224804342868196243286605135095653272073841945329421}{4751369221075443886595230556243379207006514214146105885194185484372} a^{2} + \frac{33313699776656138922354280244867173502644609928804508891593261321}{1187842305268860971648807639060844801751628553536526471298546371093} a + \frac{535278114812998967383787591472296784382295491984733535463352913709}{1187842305268860971648807639060844801751628553536526471298546371093}$
Class group and class number
$C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20411798198200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1500 |
| The 40 conjugacy class representatives for [5^3:2]S(3) |
| Character table for [5^3:2]S(3) is not computed |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | $15$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $15$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.5.8.1 | $x^{5} - 5 x^{4} + 105$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.10.16.8 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 20 x^{5} + 5 x^{4} + 80 x^{3} - 20 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ | |
| $11$ | 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.8.2 | $x^{10} + 143 x^{5} + 5929$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |