Normalized defining polynomial
\( x^{15} - 5 x^{14} - 30 x^{13} + 159 x^{12} + 496 x^{11} - 2579 x^{10} - 4208 x^{9} + 20521 x^{8} + \cdots - 710752 \)
Invariants
| Degree: | $15$ |
| |
| Signature: | $[5, 5]$ |
| |
| Discriminant: |
\(-45574341341445246456603159296\)
\(\medspace = -\,2^{8}\cdot 17^{5}\cdot 31^{8}\cdot 43^{5}\)
|
| |
| Root discriminant: | \(81.39\) |
| |
| Galois root discriminant: | $2^{4/5}17^{1/2}31^{4/5}43^{1/2}\approx 734.2974838911407$ | ||
| Ramified primes: |
\(2\), \(17\), \(31\), \(43\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-731}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{7}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{14}a^{10}+\frac{1}{14}a^{9}+\frac{1}{14}a^{8}+\frac{1}{7}a^{7}+\frac{1}{7}a^{6}-\frac{3}{7}a^{5}+\frac{5}{14}a^{4}-\frac{5}{14}a^{3}+\frac{5}{14}a^{2}-\frac{3}{7}a$, $\frac{1}{28}a^{11}-\frac{1}{28}a^{10}+\frac{3}{14}a^{9}+\frac{5}{28}a^{7}-\frac{3}{28}a^{6}-\frac{1}{7}a^{5}+\frac{3}{14}a^{4}-\frac{13}{28}a^{3}+\frac{5}{28}a^{2}+\frac{3}{7}a$, $\frac{1}{196}a^{12}-\frac{3}{196}a^{11}+\frac{2}{49}a^{9}+\frac{39}{196}a^{8}-\frac{29}{196}a^{7}-\frac{3}{14}a^{6}+\frac{45}{98}a^{5}-\frac{93}{196}a^{4}+\frac{43}{196}a^{3}+\frac{8}{49}a^{2}-\frac{22}{49}a-\frac{2}{7}$, $\frac{1}{1372}a^{13}+\frac{1}{1372}a^{12}+\frac{4}{343}a^{11}-\frac{12}{343}a^{10}-\frac{181}{1372}a^{9}-\frac{97}{1372}a^{8}+\frac{159}{686}a^{7}-\frac{79}{343}a^{6}+\frac{617}{1372}a^{5}+\frac{27}{196}a^{4}-\frac{255}{686}a^{3}+\frac{69}{686}a^{2}+\frac{293}{686}a-\frac{22}{49}$, $\frac{1}{10\cdots 92}a^{14}+\frac{30\cdots 14}{25\cdots 23}a^{13}-\frac{98\cdots 83}{50\cdots 46}a^{12}+\frac{34\cdots 17}{10\cdots 92}a^{11}+\frac{22\cdots 41}{10\cdots 92}a^{10}+\frac{47\cdots 35}{25\cdots 23}a^{9}-\frac{16\cdots 38}{36\cdots 89}a^{8}-\frac{23\cdots 63}{10\cdots 92}a^{7}-\frac{94\cdots 79}{10\cdots 92}a^{6}+\frac{12\cdots 15}{50\cdots 46}a^{5}+\frac{23\cdots 57}{50\cdots 46}a^{4}-\frac{58\cdots 89}{10\cdots 92}a^{3}+\frac{18\cdots 29}{50\cdots 46}a^{2}+\frac{13\cdots 03}{50\cdots 46}a-\frac{72\cdots 77}{36\cdots 89}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{2}$, which has order $2$ (assuming GRH) |
| |
| Narrow class group: | $C_{2}$, which has order $2$ (assuming GRH) |
|
Unit group
| Rank: | $9$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{16\cdots 62}{36\cdots 89}a^{14}-\frac{11\cdots 97}{36\cdots 89}a^{13}-\frac{19\cdots 87}{36\cdots 89}a^{12}+\frac{24\cdots 53}{36\cdots 89}a^{11}+\frac{12\cdots 98}{36\cdots 89}a^{10}-\frac{27\cdots 09}{36\cdots 89}a^{9}+\frac{32\cdots 70}{52\cdots 27}a^{8}+\frac{12\cdots 99}{36\cdots 89}a^{7}-\frac{16\cdots 90}{36\cdots 89}a^{6}+\frac{14\cdots 61}{36\cdots 89}a^{5}-\frac{39\cdots 89}{36\cdots 89}a^{4}-\frac{45\cdots 41}{36\cdots 89}a^{3}+\frac{20\cdots 98}{36\cdots 89}a^{2}-\frac{60\cdots 68}{36\cdots 89}a-\frac{23\cdots 95}{52\cdots 27}$, $\frac{59\cdots 07}{50\cdots 46}a^{14}+\frac{32\cdots 49}{10\cdots 92}a^{13}-\frac{39\cdots 03}{10\cdots 92}a^{12}-\frac{32\cdots 51}{10\cdots 92}a^{11}+\frac{81\cdots 53}{10\cdots 92}a^{10}+\frac{80\cdots 67}{10\cdots 92}a^{9}-\frac{11\cdots 57}{14\cdots 56}a^{8}-\frac{10\cdots 53}{10\cdots 92}a^{7}+\frac{67\cdots 75}{10\cdots 92}a^{6}+\frac{67\cdots 03}{10\cdots 92}a^{5}-\frac{39\cdots 33}{10\cdots 92}a^{4}-\frac{17\cdots 75}{10\cdots 92}a^{3}+\frac{14\cdots 13}{10\cdots 92}a^{2}-\frac{82\cdots 86}{25\cdots 23}a-\frac{17\cdots 27}{36\cdots 89}$, $\frac{10\cdots 31}{10\cdots 92}a^{14}-\frac{35\cdots 13}{50\cdots 46}a^{13}-\frac{16\cdots 29}{10\cdots 92}a^{12}+\frac{19\cdots 25}{10\cdots 92}a^{11}+\frac{32\cdots 51}{25\cdots 23}a^{10}-\frac{14\cdots 29}{50\cdots 46}a^{9}+\frac{16\cdots 27}{14\cdots 56}a^{8}+\frac{17\cdots 97}{10\cdots 92}a^{7}-\frac{48\cdots 91}{25\cdots 23}a^{6}-\frac{91\cdots 69}{50\cdots 46}a^{5}+\frac{72\cdots 23}{10\cdots 92}a^{4}-\frac{14\cdots 43}{10\cdots 92}a^{3}-\frac{10\cdots 85}{10\cdots 92}a^{2}+\frac{31\cdots 75}{25\cdots 23}a-\frac{12\cdots 25}{36\cdots 89}$, $\frac{26\cdots 41}{50\cdots 46}a^{14}-\frac{11\cdots 31}{10\cdots 92}a^{13}-\frac{45\cdots 50}{25\cdots 23}a^{12}+\frac{33\cdots 37}{10\cdots 92}a^{11}+\frac{77\cdots 25}{25\cdots 23}a^{10}-\frac{49\cdots 35}{10\cdots 92}a^{9}-\frac{97\cdots 68}{36\cdots 89}a^{8}+\frac{34\cdots 95}{10\cdots 92}a^{7}+\frac{37\cdots 27}{50\cdots 46}a^{6}-\frac{16\cdots 67}{10\cdots 92}a^{5}+\frac{83\cdots 03}{50\cdots 46}a^{4}+\frac{72\cdots 65}{10\cdots 92}a^{3}-\frac{43\cdots 14}{25\cdots 23}a^{2}+\frac{27\cdots 01}{50\cdots 46}a+\frac{61\cdots 87}{36\cdots 89}$, $\frac{22\cdots 73}{10\cdots 92}a^{14}-\frac{30\cdots 16}{25\cdots 23}a^{13}-\frac{32\cdots 27}{50\cdots 46}a^{12}+\frac{39\cdots 85}{10\cdots 92}a^{11}+\frac{10\cdots 13}{10\cdots 92}a^{10}-\frac{34\cdots 13}{50\cdots 46}a^{9}-\frac{59\cdots 05}{72\cdots 78}a^{8}+\frac{61\cdots 23}{10\cdots 92}a^{7}+\frac{23\cdots 77}{10\cdots 92}a^{6}-\frac{13\cdots 21}{50\cdots 46}a^{5}+\frac{40\cdots 75}{50\cdots 46}a^{4}+\frac{50\cdots 53}{10\cdots 92}a^{3}-\frac{14\cdots 18}{25\cdots 23}a^{2}-\frac{34\cdots 22}{25\cdots 23}a+\frac{40\cdots 99}{36\cdots 89}$, $\frac{18\cdots 91}{50\cdots 46}a^{14}-\frac{83\cdots 33}{10\cdots 92}a^{13}-\frac{26\cdots 44}{25\cdots 23}a^{12}+\frac{27\cdots 19}{10\cdots 92}a^{11}+\frac{15\cdots 43}{50\cdots 46}a^{10}-\frac{47\cdots 71}{10\cdots 92}a^{9}-\frac{39\cdots 67}{72\cdots 78}a^{8}+\frac{41\cdots 73}{10\cdots 92}a^{7}+\frac{16\cdots 18}{25\cdots 23}a^{6}-\frac{11\cdots 79}{10\cdots 92}a^{5}-\frac{12\cdots 59}{50\cdots 46}a^{4}-\frac{73\cdots 89}{10\cdots 92}a^{3}-\frac{78\cdots 39}{25\cdots 23}a^{2}-\frac{22\cdots 78}{25\cdots 23}a-\frac{20\cdots 79}{36\cdots 89}$, $\frac{35\cdots 77}{25\cdots 23}a^{14}-\frac{50\cdots 67}{50\cdots 46}a^{13}-\frac{23\cdots 79}{10\cdots 92}a^{12}+\frac{30\cdots 01}{10\cdots 92}a^{11}-\frac{19\cdots 74}{25\cdots 23}a^{10}-\frac{17\cdots 29}{50\cdots 46}a^{9}+\frac{52\cdots 83}{14\cdots 56}a^{8}+\frac{16\cdots 73}{10\cdots 92}a^{7}-\frac{12\cdots 63}{50\cdots 46}a^{6}-\frac{25\cdots 09}{50\cdots 46}a^{5}+\frac{70\cdots 79}{10\cdots 92}a^{4}-\frac{17\cdots 43}{10\cdots 92}a^{3}-\frac{39\cdots 81}{50\cdots 46}a^{2}+\frac{32\cdots 05}{25\cdots 23}a-\frac{14\cdots 93}{36\cdots 89}$, $\frac{15\cdots 57}{50\cdots 46}a^{14}-\frac{53\cdots 89}{25\cdots 23}a^{13}-\frac{40\cdots 83}{10\cdots 92}a^{12}+\frac{55\cdots 85}{10\cdots 92}a^{11}+\frac{98\cdots 93}{50\cdots 46}a^{10}-\frac{19\cdots 68}{25\cdots 23}a^{9}+\frac{84\cdots 69}{14\cdots 56}a^{8}+\frac{45\cdots 01}{10\cdots 92}a^{7}-\frac{34\cdots 69}{50\cdots 46}a^{6}-\frac{77\cdots 73}{50\cdots 46}a^{5}+\frac{19\cdots 09}{10\cdots 92}a^{4}-\frac{42\cdots 93}{10\cdots 92}a^{3}-\frac{61\cdots 29}{50\cdots 46}a^{2}+\frac{12\cdots 27}{50\cdots 46}a-\frac{29\cdots 77}{36\cdots 89}$, $\frac{92\cdots 51}{50\cdots 46}a^{14}-\frac{29\cdots 14}{25\cdots 23}a^{13}-\frac{17\cdots 47}{50\cdots 46}a^{12}+\frac{32\cdots 41}{10\cdots 92}a^{11}+\frac{35\cdots 01}{10\cdots 92}a^{10}-\frac{11\cdots 50}{25\cdots 23}a^{9}+\frac{32\cdots 05}{72\cdots 78}a^{8}+\frac{30\cdots 51}{10\cdots 92}a^{7}-\frac{26\cdots 91}{10\cdots 92}a^{6}-\frac{17\cdots 61}{50\cdots 46}a^{5}+\frac{59\cdots 67}{50\cdots 46}a^{4}-\frac{22\cdots 33}{10\cdots 92}a^{3}-\frac{16\cdots 05}{10\cdots 92}a^{2}+\frac{44\cdots 31}{25\cdots 23}a-\frac{16\cdots 73}{36\cdots 89}$
|
| |
| Regulator: | \( 1950706707.66 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{5}\cdot(2\pi)^{5}\cdot 1950706707.66 \cdot 2}{2\cdot\sqrt{45574341341445246456603159296}}\cr\approx \mathstrut & 2.86339391069 \end{aligned}\] (assuming GRH)
Galois group
$C_5^3:S_4$ (as 15T51):
| A solvable group of order 3000 |
| The 38 conjugacy class representatives for $C_5^3:S_4$ |
| Character table for $C_5^3:S_4$ |
Intermediate fields
| 3.1.731.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | $15$ | ${\href{/padicField/7.2.0.1}{2} }^{4}{,}\,{\href{/padicField/7.1.0.1}{1} }^{7}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{3}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $15$ | R | ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | R | $15$ | ${\href{/padicField/41.10.0.1}{10} }{,}\,{\href{/padicField/41.5.0.1}{5} }$ | R | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.1.0a1.1 | $x^{2} + x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 2.2.5.8a1.1 | $x^{10} + 5 x^{9} + 15 x^{8} + 30 x^{7} + 45 x^{6} + 51 x^{5} + 45 x^{4} + 30 x^{3} + 15 x^{2} + 5 x + 3$ | $5$ | $2$ | $8$ | $F_5$ | $$[\ ]_{5}^{4}$$ | |
|
\(17\)
| 17.1.2.1a1.1 | $x^{2} + 17$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 17.2.2.2a1.2 | $x^{4} + 32 x^{3} + 262 x^{2} + 96 x + 26$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 17.5.1.0a1.1 | $x^{5} + x + 14$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | |
|
\(31\)
| 31.5.1.0a1.1 | $x^{5} + 7 x + 28$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |
| 31.2.5.8a1.2 | $x^{10} + 145 x^{9} + 8425 x^{8} + 245630 x^{7} + 3612185 x^{6} + 21982319 x^{5} + 10836555 x^{4} + 2210670 x^{3} + 227475 x^{2} + 11745 x + 274$ | $5$ | $2$ | $8$ | $C_{10}$ | $$[\ ]_{5}^{2}$$ | |
|
\(43\)
| 43.1.2.1a1.1 | $x^{2} + 43$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 43.2.2.2a1.2 | $x^{4} + 84 x^{3} + 1770 x^{2} + 252 x + 52$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 43.2.2.2a1.2 | $x^{4} + 84 x^{3} + 1770 x^{2} + 252 x + 52$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
| 43.5.1.0a1.1 | $x^{5} + 8 x + 40$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ |