Normalized defining polynomial
\( x^{15} - 5 x^{14} - 30 x^{13} + 159 x^{12} + 496 x^{11} - 2579 x^{10} - 4208 x^{9} + 20521 x^{8} + 13460 x^{7} - 60845 x^{6} + 48450 x^{5} + 6957 x^{4} - 403447 x^{3} - 35034 x^{2} - 86972 x - 710752 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-45574341341445246456603159296=-\,2^{8}\cdot 17^{5}\cdot 31^{8}\cdot 43^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 31, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{14} a^{10} + \frac{1}{14} a^{9} + \frac{1}{14} a^{8} + \frac{1}{7} a^{7} + \frac{1}{7} a^{6} - \frac{3}{7} a^{5} + \frac{5}{14} a^{4} - \frac{5}{14} a^{3} + \frac{5}{14} a^{2} - \frac{3}{7} a$, $\frac{1}{28} a^{11} - \frac{1}{28} a^{10} + \frac{3}{14} a^{9} + \frac{5}{28} a^{7} - \frac{3}{28} a^{6} - \frac{1}{7} a^{5} + \frac{3}{14} a^{4} - \frac{13}{28} a^{3} + \frac{5}{28} a^{2} + \frac{3}{7} a$, $\frac{1}{196} a^{12} - \frac{3}{196} a^{11} + \frac{2}{49} a^{9} + \frac{39}{196} a^{8} - \frac{29}{196} a^{7} - \frac{3}{14} a^{6} + \frac{45}{98} a^{5} - \frac{93}{196} a^{4} + \frac{43}{196} a^{3} + \frac{8}{49} a^{2} - \frac{22}{49} a - \frac{2}{7}$, $\frac{1}{1372} a^{13} + \frac{1}{1372} a^{12} + \frac{4}{343} a^{11} - \frac{12}{343} a^{10} - \frac{181}{1372} a^{9} - \frac{97}{1372} a^{8} + \frac{159}{686} a^{7} - \frac{79}{343} a^{6} + \frac{617}{1372} a^{5} + \frac{27}{196} a^{4} - \frac{255}{686} a^{3} + \frac{69}{686} a^{2} + \frac{293}{686} a - \frac{22}{49}$, $\frac{1}{10199872613190683613798770092} a^{14} + \frac{308603921517578657695014}{2549968153297670903449692523} a^{13} - \frac{9877411177397138260174783}{5099936306595341806899385046} a^{12} + \frac{34343809776720292456202317}{10199872613190683613798770092} a^{11} + \frac{226155026737016970022395341}{10199872613190683613798770092} a^{10} + \frac{47866593568248510078452635}{2549968153297670903449692523} a^{9} - \frac{16152222281046926327704238}{364281164756810129064241789} a^{8} - \frac{231874136855743840657511063}{10199872613190683613798770092} a^{7} - \frac{946157772035750592403783379}{10199872613190683613798770092} a^{6} + \frac{1243501581466384966924597415}{5099936306595341806899385046} a^{5} + \frac{2320992594904189048733729857}{5099936306595341806899385046} a^{4} - \frac{58276465185206134318995289}{10199872613190683613798770092} a^{3} + \frac{1855375744674087251608569929}{5099936306595341806899385046} a^{2} + \frac{1342677176337724268962352603}{5099936306595341806899385046} a - \frac{7224695236514986376986277}{364281164756810129064241789}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1950706707.66 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3000 |
| The 38 conjugacy class representatives for [1/2.D(5)^3]S(3) |
| Character table for [1/2.D(5)^3]S(3) is not computed |
Intermediate fields
| 3.1.731.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | $15$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | $15$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | R | $15$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | R | $15$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $31$ | 31.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 31.10.8.1 | $x^{10} - 20491 x^{5} + 239127552$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $43$ | 43.2.1.2 | $x^{2} + 387$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.5.0.1 | $x^{5} - x + 10$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |