Normalized defining polynomial
\( x^{15} - 2 x^{14} - 32683 x^{13} + 474556 x^{12} + 398483171 x^{11} - 9448930490 x^{10} - 2149890958601 x^{9} + 60044615624016 x^{8} + 4866594417860856 x^{7} - 97851943474667568 x^{6} - 5825118141734624712 x^{5} + 17888510070027150336 x^{4} + 3008732613506684865072 x^{3} + 35886037118520058343136 x^{2} + 505655319767204772863856 x + 5751424233849962588258304 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-41175521478048478091458686420635252885332273019437320881692114944=-\,2^{15}\cdot 3^{5}\cdot 11^{13}\cdot 41^{13}\cdot 61^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20{,}306.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{4} a^{4} + \frac{1}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{7} - \frac{1}{18} a^{5} + \frac{1}{6} a^{4} + \frac{7}{36} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a$, $\frac{1}{72} a^{8} - \frac{1}{36} a^{6} - \frac{17}{72} a^{4} - \frac{1}{6} a^{3} + \frac{5}{12} a^{2}$, $\frac{1}{432} a^{9} - \frac{1}{216} a^{7} - \frac{1}{72} a^{6} - \frac{23}{432} a^{5} - \frac{1}{72} a^{4} + \frac{1}{4} a^{3} + \frac{1}{12} a^{2} + \frac{5}{12} a$, $\frac{1}{1568787264} a^{10} - \frac{716041}{1568787264} a^{9} - \frac{788077}{196098408} a^{8} - \frac{2017343}{196098408} a^{7} + \frac{42890359}{1568787264} a^{6} + \frac{9344959}{142617024} a^{5} + \frac{373279}{14525808} a^{4} + \frac{1648685}{32683068} a^{3} + \frac{608461}{14525808} a^{2} - \frac{8265529}{43577424} a + \frac{104939}{907863}$, $\frac{1}{4706361792} a^{11} - \frac{1}{4706361792} a^{10} - \frac{44645}{73536903} a^{9} - \frac{14171}{4861944} a^{8} - \frac{9438041}{4706361792} a^{7} - \frac{48420787}{4706361792} a^{6} + \frac{27098545}{392196816} a^{5} + \frac{71221}{2391444} a^{4} + \frac{60180643}{130732272} a^{3} - \frac{29540569}{130732272} a^{2} - \frac{89042}{907863} a + \frac{413455}{907863}$, $\frac{1}{5558213276352} a^{12} - \frac{191}{2779106638176} a^{11} - \frac{677}{5558213276352} a^{10} - \frac{1274654165}{2779106638176} a^{9} + \frac{30063127015}{5558213276352} a^{8} - \frac{36904710419}{2779106638176} a^{7} - \frac{50497771777}{1852737758784} a^{6} - \frac{60206186519}{926368879392} a^{5} - \frac{7985197951}{154394813232} a^{4} - \frac{80632631}{19299351654} a^{3} - \frac{16818192275}{51464937744} a^{2} - \frac{999736525}{8577489624} a + \frac{137327315}{357395401}$, $\frac{1}{400191355897344} a^{13} + \frac{1}{18190516177152} a^{12} - \frac{41629}{400191355897344} a^{11} - \frac{1385}{6252989935896} a^{10} + \frac{29894142367}{36381032354304} a^{9} + \frac{850574371127}{200095677948672} a^{8} - \frac{213068867929}{36381032354304} a^{7} - \frac{7367120791}{336861410688} a^{6} - \frac{628141052837}{22232853105408} a^{5} + \frac{1260957070465}{5558213276352} a^{4} - \frac{787316826443}{3705475517568} a^{3} - \frac{430295759255}{926368879392} a^{2} - \frac{757418485535}{1852737758784} a + \frac{656522575}{9649675827}$, $\frac{1}{190817275728358900217250037614303831733700553663271203826848749857135837889729604559876301236835192151552} a^{14} + \frac{78357060467454609313763673862624924990336303225496130066781303791552794425456267721399959}{95408637864179450108625018807151915866850276831635601913424374928567918944864802279938150618417596075776} a^{13} + \frac{81197590360406886129009626232144945338964264715450506569187090713154513944508760993770421}{1042717353706879236159836271116414381058472970837547561895348359875059223441145380108613667960848044544} a^{12} + \frac{603677705203935000050071242775935142663767748844782136130082100924807628227672144378554555991}{7950719822014954175718751567262659655570856402636300159452031244047326578738733523328179218201466339648} a^{11} + \frac{11028159850751418134888921061342394899211861097237620468034457378093774329184843455329523517983}{63605758576119633405750012538101277244566851221090401275616249952378612629909868186625433745611730717184} a^{10} + \frac{11004918743628084005384491842226968835292150203236057781640689738808342603314752275459317479509854751}{10600959762686605567625002089683546207427808536848400212602708325396435438318311364437572290935288452864} a^{9} - \frac{470263526797228367434737217672302676676426523779764172115022400627386509938659600570274791619356985779}{190817275728358900217250037614303831733700553663271203826848749857135837889729604559876301236835192151552} a^{8} + \frac{59166839364648094387855398375117744995959398050775697126816946367643862483885448875224364115955259527}{47704318932089725054312509403575957933425138415817800956712187464283959472432401139969075309208798037888} a^{7} - \frac{76946031401871968297946065265050755877560701231832371683000640264426485114935427640030131815766055923}{3533653254228868522541667363227848735809269512282800070867569441798811812772770454812524096978429484288} a^{6} - \frac{6475950144259912160244595556759613822759494356078867790436839624836516641295436469783106446130933111}{120465451848711426904829569200949388720770551555095456961394412788595857253617174595881503306082823328} a^{5} + \frac{111291587781972231498008242134565007914743132113622955936707950541797790613532623476879910159576443143}{5300479881343302783812501044841773103713904268424200106301354162698217719159155682218786145467644226432} a^{4} - \frac{4788970971675868769238366979612092155731799403702689779874438964975414789597213828976502500466655065}{10773333092161184519944107814719051023808748513057317289230394639630523819429178215891841759080577696} a^{3} - \frac{11191985190266067833429736150777459476982854764821105505369597694977680817254244924519113981958815137}{32719011613230264097608031140998599405641384372988889545070087424063072340488615322338186083133606336} a^{2} + \frac{15274244833315641969213095647522449807249772422891561175019385967934541036964409416666188955207389745}{220853328389304282658854210201740545988079344517675004429223090112425738298298153425782756061151842768} a - \frac{351405695694851381627960148027528356437759307967266949931460765561008723251238963904197256633174147}{4601111008110505888726129379202928041418319677451562592275481044008869547881211529703807417940663391}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.1.660264.1, 5.5.572829674183924641.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15$ | $15$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $15$ | $15$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{3}$ | R | $15$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{5}$ | $15$ | $15$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.4 | $x^{10} - 99$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $41$ | 41.5.4.4 | $x^{5} + 8856$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.10.9.5 | $x^{10} - 68864256$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $61$ | 61.5.4.2 | $x^{5} + 122$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.10.9.4 | $x^{10} - 3904$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |