Normalized defining polynomial
\( x^{15} - 30 x^{13} - 45 x^{12} + 230 x^{11} + 871 x^{10} + 750 x^{9} - 2445 x^{8} - 8010 x^{7} - 9505 x^{6} - 3026 x^{5} + 8475 x^{4} + 9910 x^{3} + 4635 x^{2} - 2935 x - 2521 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-383635938167572021484375=-\,5^{24}\cdot 23^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{30} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{30}$, $\frac{1}{30} a^{11} + \frac{1}{6} a^{7} + \frac{1}{3} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{2}{15} a + \frac{1}{6}$, $\frac{1}{60} a^{12} - \frac{1}{60} a^{10} + \frac{1}{6} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} - \frac{1}{12} a^{6} - \frac{1}{6} a^{5} + \frac{1}{4} a^{4} - \frac{1}{3} a^{3} - \frac{11}{60} a^{2} + \frac{1}{60}$, $\frac{1}{180} a^{13} - \frac{1}{180} a^{12} - \frac{1}{60} a^{11} + \frac{1}{180} a^{10} + \frac{5}{36} a^{9} + \frac{7}{36} a^{8} + \frac{1}{12} a^{7} - \frac{7}{36} a^{6} - \frac{5}{36} a^{5} + \frac{13}{36} a^{4} + \frac{23}{60} a^{3} - \frac{59}{180} a^{2} + \frac{1}{60} a - \frac{1}{180}$, $\frac{1}{96307068436693280820} a^{14} - \frac{227215414205666027}{96307068436693280820} a^{13} + \frac{119113079518591657}{96307068436693280820} a^{12} + \frac{187118014539066719}{19261413687338656164} a^{11} - \frac{305655324634156421}{32102356145564426940} a^{10} + \frac{658362622410563231}{19261413687338656164} a^{9} + \frac{2412826605693232739}{19261413687338656164} a^{8} + \frac{2530322955704310143}{19261413687338656164} a^{7} - \frac{1928601935281575769}{19261413687338656164} a^{6} + \frac{1028955300161781997}{6420471229112885388} a^{5} + \frac{32602088062957018009}{96307068436693280820} a^{4} - \frac{10042460400885325433}{96307068436693280820} a^{3} + \frac{16031929406045475053}{96307068436693280820} a^{2} + \frac{7469874632880884461}{19261413687338656164} a + \frac{6663449709218419792}{24076767109173320205}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2022515.38523 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5^2:S_3$ (as 15T13):
| A solvable group of order 150 |
| The 13 conjugacy class representatives for $(C_5^2 : C_3):C_2$ |
| Character table for $(C_5^2 : C_3):C_2$ |
Intermediate fields
| 3.1.23.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 15 sibling: | data not computed |
| Degree 25 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{5}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | R | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.10.16.23 | $x^{10} + 20 x^{9} + 25 x^{8} + 10 x^{5} + 600 x^{4} + 25$ | $5$ | $2$ | $16$ | $D_5\times C_5$ | $[2, 2]^{2}$ | |
| $23$ | 23.5.0.1 | $x^{5} - x + 2$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 23.10.5.2 | $x^{10} - 279841 x^{2} + 12872686$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |