/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^15 - 3*x^13 - 5*x^12 + 8*x^11 + x^10 + 14*x^9 - 13*x^8 - 17*x^7 + 4*x^6 + x^5 + 22*x^4 - 2*x^3 - 8*x^2 - 3*x - 1, 15, 4, [5, 5], -35351257235385344, [2, 11], [1, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^10, a^11, a^12, a^13, 1/2769251*a^14 + 1237085/2769251*a^13 - 190661/2769251*a^12 - 1217018/2769251*a^11 + 1209397/2769251*a^10 + 265482/2769251*a^9 - 1060863/2769251*a^8 + 806293/2769251*a^7 - 772551/2769251*a^6 - 1194966/2769251*a^5 - 1253042/2769251*a^4 - 753537/2769251*a^3 - 1278776/2769251*a^2 - 589461/2769251*a - 341613/2769251], 0, 1, [], 0, [ (516353)/(2769251)*a^(14) + (499839)/(2769251)*a^(13) - (1506283)/(2769251)*a^(12) - (4150681)/(2769251)*a^(11) + (1360888)/(2769251)*a^(10) + (4502646)/(2769251)*a^(9) + (8516922)/(2769251)*a^(8) - (155162)/(2769251)*a^(7) - (15035459)/(2769251)*a^(6) - (4694437)/(2769251)*a^(5) + (1346316)/(2769251)*a^(4) + (10828947)/(2769251)*a^(3) + (8692265)/(2769251)*a^(2) - (7116825)/(2769251)*a - (2685693)/(2769251) , (975382)/(2769251)*a^(14) + (1318746)/(2769251)*a^(13) - (1025848)/(2769251)*a^(12) - (6932722)/(2769251)*a^(11) - (2091569)/(2769251)*a^(10) - (758384)/(2769251)*a^(9) + (17192496)/(2769251)*a^(8) + (6856687)/(2769251)*a^(7) - (5296127)/(2769251)*a^(6) - (14889128)/(2769251)*a^(5) - (16144955)/(2769251)*a^(4) + (6020278)/(2769251)*a^(3) + (8788980)/(2769251)*a^(2) + (10551271)/(2769251)*a + (1416907)/(2769251) , (821903)/(2769251)*a^(14) + (137093)/(2769251)*a^(13) - (1241546)/(2769251)*a^(12) - (3437799)/(2769251)*a^(11) + (3760798)/(2769251)*a^(10) - (5449550)/(2769251)*a^(9) + (13733826)/(2769251)*a^(8) - (9282729)/(2769251)*a^(7) + (2346488)/(2769251)*a^(6) + (1957864)/(2769251)*a^(5) - (13916783)/(2769251)*a^(4) + (11434490)/(2769251)*a^(3) - (10460196)/(2769251)*a^(2) + (9005920)/(2769251)*a + (4378602)/(2769251) , (450856)/(2769251)*a^(14) + (658603)/(2769251)*a^(13) - (335525)/(2769251)*a^(12) - (3243519)/(2769251)*a^(11) - (1628068)/(2769251)*a^(10) - (1183381)/(2769251)*a^(9) + (8583992)/(2769251)*a^(8) + (5227289)/(2769251)*a^(7) - (1170629)/(2769251)*a^(6) - (10885850)/(2769251)*a^(5) - (8761450)/(2769251)*a^(4) + (3342761)/(2769251)*a^(3) + (8687442)/(2769251)*a^(2) + (5759105)/(2769251)*a - (837861)/(2769251) , (137093)/(2769251)*a^(14) + (1224163)/(2769251)*a^(13) + (671716)/(2769251)*a^(12) - (2814426)/(2769251)*a^(11) - (6271453)/(2769251)*a^(10) + (2227184)/(2769251)*a^(9) + (1402010)/(2769251)*a^(8) + (16318839)/(2769251)*a^(7) - (1329748)/(2769251)*a^(6) - (14738686)/(2769251)*a^(5) - (6647376)/(2769251)*a^(4) - (8816390)/(2769251)*a^(3) + (15581144)/(2769251)*a^(2) + (6844311)/(2769251)*a + (821903)/(2769251) , (30196)/(2769251)*a^(14) + (591921)/(2769251)*a^(13) + (73273)/(2769251)*a^(12) - (1114758)/(2769251)*a^(11) - (1930376)/(2769251)*a^(10) + (2282078)/(2769251)*a^(9) - (4662082)/(2769251)*a^(8) + (7876389)/(2769251)*a^(7) + (220428)/(2769251)*a^(6) - (2622057)/(2769251)*a^(5) + (2189432)/(2769251)*a^(4) - (9944789)/(2769251)*a^(3) + (515848)/(2769251)*a^(2) + (4150323)/(2769251)*a + (2883078)/(2769251) , (108007)/(2769251)*a^(14) + (248096)/(2769251)*a^(13) - (572191)/(2769251)*a^(12) - (1195160)/(2769251)*a^(11) + (541360)/(2769251)*a^(10) + (3858771)/(2769251)*a^(9) - (100665)/(2769251)*a^(8) + (651854)/(2769251)*a^(7) - (11690980)/(2769251)*a^(6) + (1788595)/(2769251)*a^(5) + (7066080)/(2769251)*a^(4) + (3785382)/(2769251)*a^(3) + (5172695)/(2769251)*a^(2) - (11910741)/(2769251)*a - (1864218)/(2769251) , (37727)/(2769251)*a^(14) - (1450559)/(2769251)*a^(13) - (1322700)/(2769251)*a^(12) + (2512745)/(2769251)*a^(11) + (9048896)/(2769251)*a^(10) - (3310704)/(2769251)*a^(9) + (806302)/(2769251)*a^(8) - (20590981)/(2769251)*a^(7) + (335198)/(2769251)*a^(6) + (14770253)/(2769251)*a^(5) + (5906789)/(2769251)*a^(4) + (11517371)/(2769251)*a^(3) - (15106736)/(2769251)*a^(2) - (7048119)/(2769251)*a + (60503)/(2769251) , (1659764)/(2769251)*a^(14) - (313763)/(2769251)*a^(13) - (4413732)/(2769251)*a^(12) - (7291579)/(2769251)*a^(11) + (13707205)/(2769251)*a^(10) - (2983621)/(2769251)*a^(9) + (26647261)/(2769251)*a^(8) - (28758914)/(2769251)*a^(7) - (17124438)/(2769251)*a^(6) + (6479937)/(2769251)*a^(5) - (2193072)/(2769251)*a^(4) + (38628882)/(2769251)*a^(3) - (15478679)/(2769251)*a^(2) - (6384410)/(2769251)*a - (3894086)/(2769251) ], 211.33204879, [[x^3 - x^2 + x + 1, 1], [x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1, 1]]]