Properties

Label 15.5.35351257235385344.1
Degree $15$
Signature $[5, 5]$
Discriminant $-\,2^{10}\cdot 11^{13}$
Root discriminant $12.68$
Ramified primes $2, 11$
Class number $1$
Class group Trivial
Galois group $S_3 \times C_5$ (as 15T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, -3, -8, -2, 22, 1, 4, -17, -13, 14, 1, 8, -5, -3, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^15 - 3*x^13 - 5*x^12 + 8*x^11 + x^10 + 14*x^9 - 13*x^8 - 17*x^7 + 4*x^6 + x^5 + 22*x^4 - 2*x^3 - 8*x^2 - 3*x - 1)
 
gp: K = bnfinit(x^15 - 3*x^13 - 5*x^12 + 8*x^11 + x^10 + 14*x^9 - 13*x^8 - 17*x^7 + 4*x^6 + x^5 + 22*x^4 - 2*x^3 - 8*x^2 - 3*x - 1, 1)
 

Normalized defining polynomial

\( x^{15} - 3 x^{13} - 5 x^{12} + 8 x^{11} + x^{10} + 14 x^{9} - 13 x^{8} - 17 x^{7} + 4 x^{6} + x^{5} + 22 x^{4} - 2 x^{3} - 8 x^{2} - 3 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $15$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[5, 5]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(-35351257235385344=-\,2^{10}\cdot 11^{13}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.68$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
$|\Aut(K/\Q)|$:  $5$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2769251} a^{14} + \frac{1237085}{2769251} a^{13} - \frac{190661}{2769251} a^{12} - \frac{1217018}{2769251} a^{11} + \frac{1209397}{2769251} a^{10} + \frac{265482}{2769251} a^{9} - \frac{1060863}{2769251} a^{8} + \frac{806293}{2769251} a^{7} - \frac{772551}{2769251} a^{6} - \frac{1194966}{2769251} a^{5} - \frac{1253042}{2769251} a^{4} - \frac{753537}{2769251} a^{3} - \frac{1278776}{2769251} a^{2} - \frac{589461}{2769251} a - \frac{341613}{2769251}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 211.33204879 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5\times S_3$ (as 15T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 30
The 15 conjugacy class representatives for $S_3 \times C_5$
Character table for $S_3 \times C_5$

Intermediate fields

3.1.44.1, \(\Q(\zeta_{11})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $15$ $15$ ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ $15$ $15$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{3}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{3}$ $15$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.5.4.4$x^{5} - 11$$5$$1$$4$$C_5$$[\ ]_{5}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
* 1.11.5t1.1c1$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11.5t1.1c2$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
1.11.10t1.1c1$1$ $ 11 $ $x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.1c2$1$ $ 11 $ $x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_{10}$ (as 10T1) $0$ $-1$
1.11.10t1.1c3$1$ $ 11 $ $x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_{10}$ (as 10T1) $0$ $-1$
* 1.11.5t1.1c3$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
* 1.11.5t1.1c4$1$ $ 11 $ $x^{5} - x^{4} - 4 x^{3} + 3 x^{2} + 3 x - 1$ $C_5$ (as 5T1) $0$ $1$
1.11.10t1.1c4$1$ $ 11 $ $x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_{10}$ (as 10T1) $0$ $-1$
* 2.2e2_11.3t2.1c1$2$ $ 2^{2} \cdot 11 $ $x^{3} - x^{2} + x + 1$ $S_3$ (as 3T2) $1$ $0$
* 2.2e2_11e2.15t4.1c1$2$ $ 2^{2} \cdot 11^{2}$ $x^{15} - 3 x^{13} - 5 x^{12} + 8 x^{11} + x^{10} + 14 x^{9} - 13 x^{8} - 17 x^{7} + 4 x^{6} + x^{5} + 22 x^{4} - 2 x^{3} - 8 x^{2} - 3 x - 1$ $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2e2_11e2.15t4.1c2$2$ $ 2^{2} \cdot 11^{2}$ $x^{15} - 3 x^{13} - 5 x^{12} + 8 x^{11} + x^{10} + 14 x^{9} - 13 x^{8} - 17 x^{7} + 4 x^{6} + x^{5} + 22 x^{4} - 2 x^{3} - 8 x^{2} - 3 x - 1$ $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2e2_11e2.15t4.1c3$2$ $ 2^{2} \cdot 11^{2}$ $x^{15} - 3 x^{13} - 5 x^{12} + 8 x^{11} + x^{10} + 14 x^{9} - 13 x^{8} - 17 x^{7} + 4 x^{6} + x^{5} + 22 x^{4} - 2 x^{3} - 8 x^{2} - 3 x - 1$ $S_3 \times C_5$ (as 15T4) $0$ $0$
* 2.2e2_11e2.15t4.1c4$2$ $ 2^{2} \cdot 11^{2}$ $x^{15} - 3 x^{13} - 5 x^{12} + 8 x^{11} + x^{10} + 14 x^{9} - 13 x^{8} - 17 x^{7} + 4 x^{6} + x^{5} + 22 x^{4} - 2 x^{3} - 8 x^{2} - 3 x - 1$ $S_3 \times C_5$ (as 15T4) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.