Normalized defining polynomial
\( x^{15} - 110 x^{13} - 330 x^{12} + 6050 x^{11} + 25674 x^{10} - 442200 x^{9} - 2425610 x^{8} + 6912345 x^{7} + 36375350 x^{6} - 70930618 x^{5} - 40668100 x^{4} + 762404060 x^{3} - 1733605720 x^{2} - 2315335000 x + 7384846832 \)
Invariants
| Degree: | $15$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[5, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-337135860780576171875000000000000000=-\,2^{15}\cdot 5^{25}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $233.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{16} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{3520} a^{10} + \frac{1}{64} a^{9} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{3}{64} a^{6} - \frac{69}{320} a^{5} + \frac{1}{32} a^{4} + \frac{1}{4} a^{3} + \frac{5}{16} a^{2} - \frac{3}{16} a - \frac{7}{40}$, $\frac{1}{7040} a^{11} - \frac{1}{128} a^{9} + \frac{1}{64} a^{8} + \frac{9}{128} a^{7} + \frac{9}{160} a^{6} + \frac{1}{128} a^{5} - \frac{11}{64} a^{4} - \frac{3}{32} a^{3} - \frac{5}{16} a^{2} - \frac{69}{160} a - \frac{3}{16}$, $\frac{1}{7040} a^{12} - \frac{1}{7040} a^{10} - \frac{3}{128} a^{8} - \frac{1}{160} a^{7} + \frac{15}{128} a^{6} + \frac{11}{160} a^{5} + \frac{1}{8} a^{4} + \frac{7}{16} a^{3} + \frac{1}{160} a^{2} - \frac{1}{2} a - \frac{9}{40}$, $\frac{1}{535040} a^{13} + \frac{17}{267520} a^{12} - \frac{3}{535040} a^{11} - \frac{37}{267520} a^{10} + \frac{127}{9728} a^{9} - \frac{1347}{24320} a^{8} - \frac{2951}{48640} a^{7} + \frac{2001}{24320} a^{6} + \frac{4343}{24320} a^{5} + \frac{353}{2432} a^{4} + \frac{371}{12160} a^{3} - \frac{273}{6080} a^{2} + \frac{1011}{6080} a + \frac{229}{3040}$, $\frac{1}{154485165875657947796413667219559037897523855360} a^{14} + \frac{1675892671493494930689186984048260595823}{3592678276178091809218922493478117160407531520} a^{13} + \frac{7020315331514586351596467142270239284043243}{154485165875657947796413667219559037897523855360} a^{12} - \frac{9013251200039932622482110991857090267886291}{154485165875657947796413667219559037897523855360} a^{11} - \frac{8927100271426085953278565357041248018776157}{154485165875657947796413667219559037897523855360} a^{10} - \frac{155375405436574440911854273442489335982529109}{14044105988696177072401242474505367081593077760} a^{9} + \frac{652263402218777272977352138737089593488617519}{14044105988696177072401242474505367081593077760} a^{8} - \frac{80309569235434939328607951277592241374337793}{739163473089272477494802235500282477978583040} a^{7} + \frac{20663641519167939826153047549356203497223131}{3511026497174044268100310618626341770398269440} a^{6} - \frac{82420416809230694286510616047408747866374401}{7022052994348088536200621237252683540796538880} a^{5} - \frac{27800519362659069768148571167535923046988407}{1755513248587022134050155309313170885199134720} a^{4} - \frac{911679060518210862221250954344200920853427161}{3511026497174044268100310618626341770398269440} a^{3} - \frac{158493925322916314071305782716253585304772859}{438878312146755533512538827328292721299783680} a^{2} - \frac{347357213130482929356134548836593579952806013}{1755513248587022134050155309313170885199134720} a - \frac{1077525738951396181886146714863920684374571}{20412944751011885279652968712943847502315520}$
Class group and class number
$C_{5}\times C_{5}$, which has order $25$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36521311280903.49 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times S_3$ (as 15T4):
| A solvable group of order 30 |
| The 15 conjugacy class representatives for $S_3 \times C_5$ |
| Character table for $S_3 \times C_5$ |
Intermediate fields
| 3.1.440.1, 5.5.5719140625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15$ | R | $15$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{5}$ | $15$ | $15$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }$ | $15$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $5$ | 5.5.8.4 | $x^{5} - 5 x^{4} + 55$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.10.17.27 | $x^{10} - 10 x^{8} + 10$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.10.9.2 | $x^{10} - 72171$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |